
Steel Plate

The quality policy of China Steel Corporation China Steel Corporation, based-on customer orientation, will incessantly innovate, research & develop to provide excellent and eco-friendly products, and consequently fulfill our responsibility to society. China Steel Building (Group Headquarters)

CHINASTEEL

China Steel Corporation (CSC), located at Kaohsiung, Taiwan was founded in December 1971. With annual capacity (in terms of crude steel) around 10 million tonnes, CSC produces a range of products that includes plates, bars, wire rods, hot and cold rolled coils, electrogalvanized coils, electrical steel coils, hot-dip galvanized coils, and Ti/ Ni-base alloy. The domestic market takes roughly 65% of CSC's production and the exports take the remaining 35%. CSC is the largest steel company in Taiwan, enjoying more than 50% of the domestic market. Major export destinations are Mainland China, Japan and Southeast Asia.

CSC is very active in innovation, and has strong capability to put the innovations into practice. The company's vision is: "We aspire to be a trustworthy steel company of global distinction that pursues growth, environmental protection, energy saving and value-innovation". CSC actively puts into practice its corporate values of "teamwork, entrepreneurial approach, down-to-earthiness and pursuit of innovation", as well as its operations beliefs of " promotion of social well-being, result orientation, implementation of teamwork, and emphasis on employees' self-realization." CSC keeps deepening the roots for its core business in steel, and devoted to integrate the related downstream industries to foster healthy development and international competitiveness of Taiwan's steel related industry.

Plant Greening

China Steel Corporation (CSC) is an integrated steel producer that has produced steel plates since the commencement of its plate mill. Through developments and improvements over the years, CSC's comprehensive steel plate grades have fulfilled industrial requirements demanded by general structure and building applications such as earthquake resistance, weather resistance, corrosion resistance, fire resistance, bridge and welding, as well as other uses like construction of ships, pressure vessels, line pipes, HIC resistance, laser-cutting, etc.

Much emphasis has placed on product safety standards. As surrounding conditions change, the quality and reliability of the steel become increasingly important. If quality fails, accidents and severe consequences may result. Therefore, besides selecting the proper type of steel plate, it is also crucial for a steel producer to adopt proper design, process equipment, production conditions and quality control demanded by customer's requirements and specifications in order to ensure quality and stability.

CSC's steel plates have been approved by certifications such as ABS, BV, CR, CCS, DNV, GL, KR, LR, NK, ISO 9001, ISO/TS 16949, JIS MARK. They also conform to the regulations of QC080000, RoHS and REACH. The approvals and qualifications are testament to CSC's commitment to reliable and superior products, thus providing its clients a peace of mind.

The vision of CSC's customer services is to gain

customers' appreciation and trust and help them be successful, and the aim of that is to promote customers' technology and upgrade the steel industry. In order to enhance the customer services, CSC adopts multi-step and multi-level service pattern which is characterized by emphasizing on (1) the pre-sale services for helping customers to choose suitable materials and improve their production processes; (2) handling complains and claims from customers with proper and rapid manner, and conducting customers the corresponding improvements to the root-causes; (3) providing customers with the developed high-grade materials to meet the upgrade policy for domestic industries.

The stable and reliable quality of CSC's steel products have gained the acceptance of domestic industries widely, and CSC has also been selected as the first priority provider to purchase their needed steel materials owing to CSC's quick and efficient technical services. CSC will continue to improve customer services and the technical technologies both for customers and CSC itself to promote steel-use industries' international competitiveness.

ASTM A841 Gr.B Class2

This grade is a new specification of thermal-mechanical control process (TMCP) steel plates for pressure vessels possessing high yield strength, high charpy V-notch impact absorption energy at low temperature and low carbon content to obtain excellent weldability that are the best used in pressure vessel at low temperature environment (note: heat-treatment temperature during or after fabrications shall not exceed 650°C)

JIS G3101 SS400 -Steel Plates for Laser Cutting

This grade of steel plate has special surface quality to prevent problems from laser cutting such as nozzle blocking or miss-focusing, and providing good cutting quality

CSC LYS100

This grade of steel plate has excellent seismic resistance due to properties of extremely low yield strength and yield ratio that are the best used in steel structural parts of buildings for absorbing elastic potential energy released by earthquake and protect main structure

CSC PZ30H

This grade of chromium and molybdenum steel plate has excellent formability to attain high dimensional & shape accuracy after forming, also possesses excellent wear-resistance, toughness, heat- resistance to prevent abrasion or fracture that are best used in mold

CNS 13812 SN490YB/YC

The yield/tensile strength ratio of this grade of steel plate has been designed below 80% (YS: 325~445 MPa) to absorb maximum elastic potential energy released by earthquake that enables uniform plastic deformation within thickness range of 40.01~ 80.00mm and prevents buildings & constructions from collapsing.

CSC PZ590T

This grade of high strength structural steel plate belongs to the specification of HI-TEN590C group, and possesses very low C, S, P etc elements to obtain excellent weldability and toughness that are the best used in heavy machinery such as forks of power lift truck and dipper buckets of hydraulic shovel.

CSC PH490TB

This grade of structural steel plate possesses characteristics of fire-resistance through effects of alloying elements, and provides feature of yield strength at 600°C (873K) being 2/3 or more of the specified minimum yield strength at room temperature that are the best used in fire-resistant structure of high-rise buildings, factories and laboratories.

CSC SM570M (Building Structure with)

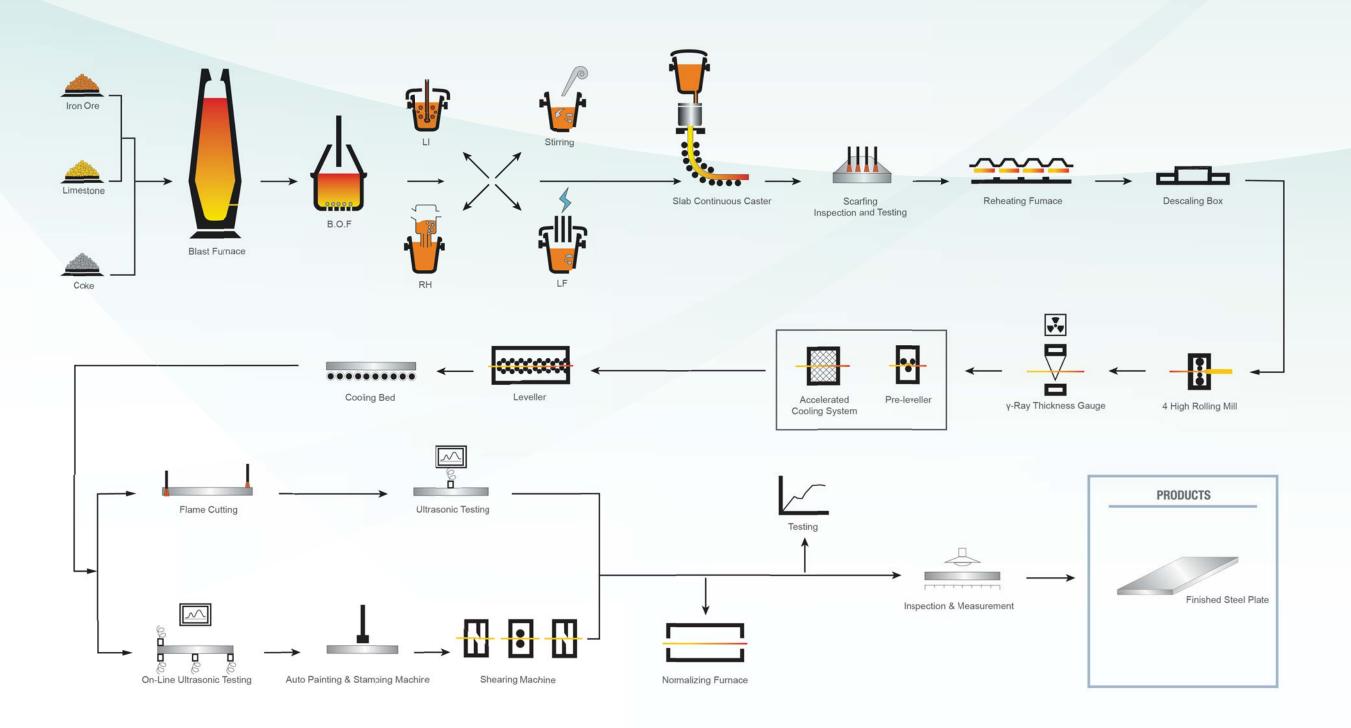
This grade of structural steel plate has higher strength than the general structures of building. Its strengths can be classified into 4 classes (A, B, C and C HW). In addition to excellent weldability, toughness and ultra-high strength, the class of C HW is applicable to high heat input welding that are the best used in structure of high-rise buildings such as Taipei 101 and Taipei Gemini towers.

ASTM A516 HIC (The pressure vessel of Hydrogen Induced Crack resistant)

This grade of steel plate has ultra-low C. P. S. elements, the design of proper alloy and the addition of special process, as well as provides resistance to hydrogen induced cracking (HIC) and controlling crack length ratio (CLR) below 15% that are the best used in those environments with high H₂S.

ABS EH47(Hull plate)

This grade of high-strength steel plate for shipbuilding has low sulfur and low phosphorus composition design and control of rolling mill reductions and accelerated cooling process, high cleanliness, high strength, high toughness, good welding characteristics that are applicable to the hatch coaming hull structure. In 2012, five certificates for these products were approved by the Classification Societies and then CSC provided CSBC with these products for building the large container ships.



Reheating Furnace

Slabs are heated a temperature in a typical range from 1150 to 1270 °C . Reheating reduces the deformation strength of slabs sufficiently to allow it to be rolled, and ensure that all alloy elements are in solid solution.

4 High Rolling Mill

The rolling process for a plate thus has to achieve the correct dimensions. The device(HAGC,WRB,AWC) is used to obtain excellent dimensional accuracy and uniformity.

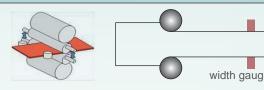
Vertical Edger

The addition of an edger and its integrated width control automation package gives more accurate control of the product width and significantly reduces width variations.

Accelerated Cooling

ACC equipments can be used to realize TMCP process and improve the properties of steel plates. Thermo-mechanical control process(TMCP) is a micro-structural control technique combining controlled rolling and cooling.

Hot Leveller


Leveller is a stress relief process carried out through low and controlled elongation in a multi-roller machine, the plate surface undergoing a series of reverse bends.

HAGC (Hydraulic Automatic Gauge Control):

Automatic gauge control(AGC) is a closed loop control function designed to regulate thickness at the exit of the rolling mill stand to increase the thickness accuracy. To make sure that the flat products rolled in the mill are of required uniform thickness within the required tolerance.

AWC (Automatic Width Control):

Automatic width control (AWC) can be applied at each edger to provide in-bar width control to increase the width accuracy by adjusting the roll gap. The addition of an edger and its integrated width control automation package gives more accurate control of the product width and significantly reduces width variations.

Cooling Bed

Ultrasonic Testing

Plates are finally air cooled as
they are transferred across a
cooling bed. In special cases,
stacking of plates to reduce
the cooling rate is employed.

Ultrasonic Testing is a form
of quality assurance used for
ensuring the strength and
quality of rolled steel plate.

Hot Painting

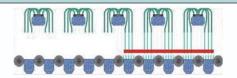
Paint printing can be done on the surface of steel plate according to the requirements of customers and standards.

Shearing device

As well as cutting discrete plates to their ordered sizes. The shear-line also extracts test samples which are used to certify the plate properties.

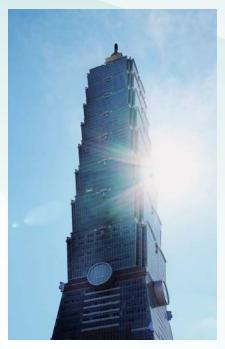
Normalizing furnace

The plates be treated by roller normalizing furnace, which can normalize, temper, anneal and stress-relief.


WRB (Work Roll Bending System):

The crowned roller will only compensate for one set of condition, specifically the material, temperature, and amount of deformation. Work roll bending involves using hydraulic cylinders at the ends of the rolls to counteract roll deflection. To make sure the flatness coming into the mill will be preserved at the exit of the mill.

CSAC (China Steel Accelerated Cooling):



Thermo-mechanical control process (TMCP) is a microstructural control technique combining controlled rolling and cooling. TMCP is used to obtain excellent properties for steel plants, such as high strength, excellent toughness, and excellent weld-ability.

(

6

6.1 Building Structure

Taipei 101 Building was constructed by using steel SM570M for welded structures.

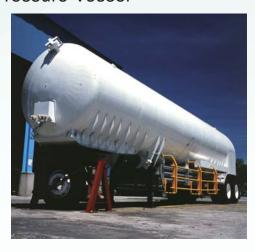
China Steel Building was constructed by building structure steel SN490B and SN490C.

6.2 Welded Structure

National Stadium of Kaoshiung is constructed by CSC's building structure steel SN490A and high strength structural steel A572 Gr.50.

CSC auditorium was constructed by atmospheric corrosion resistant structural steel A588.

6.3 Hull Construction


Hatch coaming top of the 8000 TEU cargo ship of Evergreen Marine Corporation (Taiwan) was constructed by CSC's EH47 hull plates.

6.4 Bridge Structure

Xinfa bridge, which was donated and constructed by CSC Group, was built by atmospheric corrosion structural steel for bridge A709 Gr.50W.

6.5 Pressure Vessel

Tank truck was made of pressure vessel steel.

6.6 Specialty Usage

One of CSC plant site chimneys was made from corrosion resistant steel SCR-TEN.

7.1 Chemical Compositions and Mechanical Properties

7.1.1 Steel Plates for General Structural Usage

7.1.1.1 JIS G3101-10 Rolled Steels for General Structure

		Cher	nical C	ompositio	ons %				Ter	nsion Test			
	Thick- ness					Yield F	Point or N/I	Yield S mm²	strength	Tensile	Elo	ngation	
Grade	(t)	С	Mn	Р	S	Т	hickness	s(t) mr	n	Strength			
	mm					t ≦ 16	16 < t ≦ 40	40 < t ≦ 100	t > 100	N/mm²	Thickness (t) mm	Test Piece	%
											6 ≦ t ≦ 16	No.1A	21 min.
SS330	6 ≦ t ≦ 50					205 min.	195 min.	175 min.	165 min.	330 ~430	16 < t ≦ 50	No.1A	26 min.
											40 < t	No.4	28 min.
											6 ≦ t ≦ 16	No.1A	17 min.
SS400	6 ≦ t ≦ 150	_		0.050 max.	0.050 max.	245 min.	235 min.	215 min.	205 min.	400 ~510	16 < t ≦ 50	No.1A	21 min.
											40 < t	No.4	23 min.
											6 ≦ t ≦ 16	No.1A	15 min.
SS490	6 ≦ t ≦ 50					285 min.	275 min.	255 min.	245 min.	490 ~610	16 < t ≦ 50	No.1A	19 min.
											40 < t	No.4	21 min.
SS540	6 ≦ t	0.30	1.60	0.040	0.040	400	390			540	6 ≦ t ≦ 16	No.1A	13 min.
33340	≦ 40	max.	max.	max.	max.	min.	min.			min.	16 < t ≤ 40	No.1A	17 min.

Remark: 1. Alloy elements other than those shown in the above table may be added necessary.

^{2.} For the elongation of No.4 test piece for steel plates over 90mm in thickness, it shall be subtracted 1% from the values of elongation per each increase of 25.0mm or its fraction in thickness. However, the limit to be subtracted shall be 3%.

7.1.1.2 JIS G3106-08 Rolled Steels for Welded Structure

		Ch	emica	l Comp	ositions	%					Tens	sion Test				In	npact Test	
0	Thick- ness						Yield		or Y N/mn		trength	Tensile	Eloi	ngation		Test	Charpy Absorbed	Test
Grade	(t) mm	С	Si	Mn	Р	S		Thickr 16	ness (t) m	m 100	Strength	Thickness	Test	%	Temp	Energy	st piece
							t ≦ 16		< t ≦ 75			N/mm²	(t) mm	Piece	min	℃	Average J	ce
SM	t ≦ 50	0.23 max.		2.5														
400A	50 < t ≦ 90	0.25 max.	_	×C min.							205		6 ≦ t ≦ 16	No.1A	18	_	_	
SM	t ≦ 50	0.20 max.	0.35	0.60~	0.035 max.	0.035 max.	245 min.	235 min.	215 min.	215 min.	min.	400~ 510	16 < t ≦ 50	No.1A	22	0	27	
400B	50 < t ≤ 90	0.22 max.	max.	1.40									= 30 40 < t	No.4	24	0	min.	
SM 400C	t ≦ 90	0.18 max.	0.35 max.	1.40 max.							_		10 (1	140.1		0	47 min.	
SM	t ≦ 50	0.20	0.55															
490A	50 < t ≤ 90		max.								285		6 ≦ t ≦ 16	No.1A	17	_	_	
	t ≦ 50	0.18			0.035		l				min.	490~ 610	16 < t	No.1A	21			
SM 490B	50 < t	0.20	0.55 max.		max.	max.	min.	min.	min.	min.		010	≦ 50			0	27 min.	Parall
SM	≦ 90 t ≦	max. 0.18	0.55	1.65									40 < t	No.4	23	0	47	llel to n
490C SM	100	max.	max.	max.									6 ≦ t	No.1A	15		min.	rolling o
490YA		0.20	0.55	4.05	0.005	0.005	205	٥٠٠	225	225		400	≦ 16					direction
SM 490YB	t ≦ 90	0.20 max.	max.		0.035 max.	max.	min.	min.	335 min.	325 min.	_	490~ 610	16 < t ≦ 50	No.1A	19	0	27 min.	١
													40 < t	No.4	21			
SM 520B													6 ≦ t ≦ 16	No.1A	15	0	27 min.	
SM 520C	t ≦ 90		0.55 max.		0.035 max.		l	355 min.			—	520~ 640	16 < t ≦ 50	No.1A	19	0	47 min.	
													40 < t	No.4	21			
													6 ≦ t ≦ 16	No.5	19			
SM 570	t ≦ 90	0.18 max.	l		0.035 max.	0.035 max.	l .	l			_	570~ 720	16 < t	No.5	26	-5	47 min.	
													20 < t	No.4	20			

Remarks \div 1. Alloy elements other than those shown in the above table may be added necessary.

^{2.} Impact test is applicable to thickness over 12.0mm of steel.

7.1.1.3 ASTM A36-12 Carbon Structural Steel

		Chemica	al Compos	itions %			Tension	Test	
Thickness (t) mm						Yield Point	Tensile Strength	Elonga	tion
(1) 111111	С	Si	Mn	Р	S	ksi (N/mm²)	ksi (N/mm²)	Test Piece in.(mm)	%
t ≦ 19.05	0.25		_						
t = 10.00	max.	0.40							
19.05 < t ≦ 38.10	0.25	max.							
$13.03 \times 1 = 30.10$	max.		0.80~			0.0			
38.10 < t ≤ 63.50	0.26		1.20	0.040	0.050	36 (250)	58~80	GL=8(200)	20min.
36.10 < t = 03.30	max.			max.	max.	min.	(400~550)	GL=2(50)	23min.
63.50 < t ≦ 101.60	0.27	0.15~				111111.			
03.30 < € 101.00	max.	0.40	0.85~						
10160 / +	0.29		1.20						
101.60 < t	max.								

Remarks: 1. When copper steel is specified, minimum Cu shall be 0.20%.

- 2. For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted up to the maximum of 1.35%.
- 3. For plates wider than 24 in.(600mm), the elongation requirement is reduced two percentage points.
- 4. For nominal thickness under 5/16 in.(8mm), the deduction from the specified percentage of elongation in 8 in.(200mm) shall be made for decreases of the nominal thickness below 5/16 in.(8mm). See elongation requirement adjustments under the Tension Tests Section of Specification A6 for deduction values.

7.1.1.4 ASTM A283-13 Low and Intermediate Tensile Strength Carbon Steel Plates

		Che	emical Compo	ositions 9	6			Tensio	n Test	
Grade	С	Thicknes	ss(t)mm	Mn	P	S	Yield Point	Tensile Strenath	Elongatio	n
		t ≦ 38.10	t > 38.10	IVITI	P	5	(N/mm²)	ksi(N/mm²)	Test Piece in.(mm)	%
Grade C	0.24 max.	0.40	0.15~	0.90	0.030	0.030	30 (205) min.	55~75 (380~515)	GL=8(200) GL=2(50)	22min. 25min.
Grade D	0.27 max.	max.	0.40	max.	max.	max.	33(230) min.	60~80 (415~550)	GL=8(200) GL=2(50)	20min. 23min.

Remarks: 1. When copper steel is specified, minimum Cu shall be 0.20%.

- 2. For plates wider than 24 in.(600mm), the elongation requirement is reduced two percentage points.
- 3. For nominal thickness under 5/16 in.(8mm), the deduction from the specified percentage of elongation in 8 in.(200mm) shall be made for decreases of the nominal thickness below 5/16 in.(8mm). See elongation requirement adjustments under the Tension Tests section of Specification A6 for deduction values.
- 4. Applicable thickness range of this specification is from 6.00 to 50.80mm.

7.1.1.5 ASTM A572-13 High-Strength Low-Alloy Columbium-Vanadium Structural Steel

					Ch	nemical	Compositi	ons %					Tension	Test	
	Thickness						Type1	Type2	-	Туре 3		Yield	Tensile	Elongat	ion
Grade	(t) mm	С	Si	Mn	Р	S	Nb	V	Nb	V	Nb +V	Point ksi (N/mm²)	Strength ksi (N/mm²)	Test piece in.(mm)	%
Grade	t ≦ 38.10	0.21	0.40 max.									42	60	GL= 8(200)	20 min.
42	38.10 < t ≦ 101.60	max.	0.15~ 0.40									(290) min.	(415) min.	GL= 2(50)	24 min.
Grade	t ≦ 38.10	0.23	0.40 max.									50	65	GL= 8(200)	18 min.
50	38.10 < t ≦ 101.60	max.	0.15~ 0.40	1.35 max.								(345) min.	(450) min.	GL= 2(50)	21 min.
Grade	t ≦ 38.10	0.25	0.40 max.	IIIdx.	0.040	0.050	0.005~ 0.050	0.01~	0.005~ 0.050	0.01~	0.02~ 0.15	55 (380)	70 (485)	GL= 8(200)	17 min.
55	t > 38.10	max.	0.15~ 0.40		max.	max.	0.050	0.15	0.050	0.15	0.15	min.	min.	GL= 2(50)	20 min.
Grade 60	t ≦ 31.75	0.26 max.	0.40 max.									60 (415) min.	75 (520) min.	GL= 8(200) GL= 2(50)	16 min. 18 min.
Grade	t ≦ 12.70	0.26 max.	0.40	1.35 max.								65	80	GL= 8(200)	15 min.
65	12.70 < t ≦ 31.75	0.23 max.	max.	1.65 max.								(450) min.	(550) min.	GL= 2(50)	17 min.

Remarks : 1. When copper steel is specified, minimum Cu shall be 0.20%.

- 2. Manganese, minimum by heat analysis of 0.80% shall be required for all plates over 3/8 in.(9.53mm) in thickness, a minimum of 0.50% shall be required for plates 3/8 in.(9.53mm) and less in thickness, and for all other products. The manganese to carbon ratio shall not be less than 2 to 1.
- 3. Gr.42,50,55,60 for each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum is permitted, up to a maximum of 1.60%.
- 4. Gr.65 if the thickness is 12.70mm or under, an alternative chemical requirement with a maximum carbon of 0.21% and a maximum manganese of 1.65% is permitted.
- 5. For plates wider than 24 in. (600mm), the elongation requirement is reduced two percentage points for Grades 42,50 and 55, and three percentage points for Grades 60 and 65. See elongation requirement adjustments in the Tension Tests section of Specification A6/A6M.

7.1.1.6 ASTM A573-13 Structural Carbon Steel Plates of Improved Toughness

			Chemica	al Compo	sitions %	, D		Tension	Test	
Grade	Thickness						Yield Point	Tensile	Elongation	on
Graue	(t) mm	С	Si	Mn	Р	S	ksi (N/mm²)	Strength ksi (N/mm²)	Test piece in.(mm)	%
Grade 58	t ≦ 38.10	0.23 max.	0.10~ 0.35	0.60~ 0.90			32(220) min.	58~71 (400~490)	GL=8(200) GL=2(50)	21min. 24min.
Grade 65	t ≦ 12.70	0.24 max.					35(240)	65~77	GL=8(200)	20min.
Grade 05	12.70 < t ≤ 38.10	0.26 max.	0.15~	0.85~	0.030 max.	0.030 max.	min.	(450~530)	GL=2(50)	23min.
Grade 70	t ≦ 12.70	0.27 max.	0.40	1.20			42(290)	70~90	GL=8(200)	18min.
Grade 70	12.70 < t ≦ 38.10	0.28 max.					min.	(485~620)	GL=2(50)	21min.

Remarks: 1. For plates wider than 24 in.(600mm), the elongation requirement is reduced two percentage points. See elongation requirement adjustments in the Tension Tests Section of Specification A6/A6M.

- 2. The upper limit of manganese for Gr.58 may be exceeded, provided that the carbon content plus 1/6 manganese content does not exceed 0.40% based on heat analysis.
- 3. Gr.58,65 for each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum is permitted, up to a maximum of 1.50% and 1.60% for Grades 70.

7.1.1.7 ASTM A709-13 Structural Steel for Bridges

					Chem	ical Com	nposition	s %					Tension Te	est	
	Thick-						Type 1	Type 2	7	Гуре 3		Yield Point	Tensile	Elongat	ion
Grade	ness (t) mm	С	Si	Mn	Р	S	Nb	V	Nb	V	Nb+V	or Yield	Strength ksi (N/mm²)	Test piece in.(mm)	% min
	t ≦ 19.05	0.25	0.40	_										GL=	20
Grade	19.05 < t ≦ 38.10	max.	max.	0.80~								36	58~80	8(200)	20
36	38.10 < t ≦ 63.50	0.26 max.	0.15~	1.20			_	_	_	_	_	(250) min.	(400~550)	GL=	2.2
	63.50 < t ≦ 101.60	0.27 max.	0.40	0.85~ 1.20	0.040 max.	0.050 max.								2(50)	23
Grade	t ≦ 38.10	0.23	0.40 max.	1.35			0.005	0.01	0.005	0.01	0.02	50	65(450)	GL= 8(200)	18
50	38.10 < t ≦ 101.60		0.15~ 0.40				~ 0.050	~ 0.15	~ 0.050	~ 0.15	~ 0.15	(345) min.	min.	GL= 2(50)	21
Grade t ≤		0.19	0.30~	0.80~			Ni	Cr	Cu	V	_	50	70(485)	GL= 8(200)	18
Type A	50W t ≦	max.	0.65	1.25			0.40 max.	0.40 ~0.65	0.25 ~0.40	0.02 ~0.10	_	(345) min.	min.	GL= 2(50)	21

Remarks: 1. When copper is specified, minimum Cu shall be 0.20%.

- 2. For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese.
- 3. Manganese of Gr.50, minimum by heat analysis of 0.80% shall be required for all plates over 3/8 in.(9.53mm) in thickness, a minimum of 0.50% shall be required for plates 3/8 in.(9.53mm) and less in thickness, and for all other products. The manganese to carbon ratio shall not be less than 2 to 1.For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum is permitted, up to a maximum of 1.60%.
- 4. For Gr.50W Type A, the silicon content in excess of 0.40% by heat analysis must be negotiated.
- 5. For each reduction of 0.01% below the specified maximum for carbon, an increase of 0.06% above the specified maximum for manganese is permitted, up to a maximum of 1.50%.
- 6. For plates wider than 24 in.(600mm), the elongation requirement is reduced two percentage points. See elongation requirement adjustments in the Tension Tests section of Specification A6/A6M.

7.1.1.8 JIS G3140-08 SBHS500 Higher Yield Strength Steel Plates for Bridges

					Сс	mpositio	n %						Mechai	nical P	roperties		
												Е	longatio	n		Impact Te	est
	l n	hick- ness										No. 5	No. 5	No. 4			
Grad	le ((t)	С	Si	Mn	Р	S	N	Pcm	YS	TS	Thick	ness(t)mm	Temp	AVG	Test
										IN/mm²	N/mm²	13	16	20	℃	Joule	piece
												≦ t ≦	< t ≦	t≦			
												16	20	80			
SBH 50	S ≦	15 ≨ t ≦ 80	0.11 max.	0.55 max.	2.00 max.	0.020 max.	0.006 max.	0.006 max.	0.20 max.	500 min.	570 2 720	19 min.	26 min.	20 min.	-5	100 min.	Trans. to rolling direction

7.1.1.9 JIS G3136-12 Rolled Steels for Building Structure

	it .		Test	piece							No.4 in	direction				
	Impact Test	Charpy	Absorbed	Average							27	Ä.				
			Test	C C C C							C)				
		Through- thickness characteristics		Individual					7.	min.					15 min.	
		Thro thick charac		Average	%				25	min.		I			25 min.	
		(%	No.4	mm	40 < t ≤ 100	23 min.		24	mi.				23	H.		
es		Elongation (%)	No. 1A	Thickness(t)	16 < t ≤ 50	2 1 min.		22	min.				21	min.		
I Properties		Elor	No. 1A	Thick	t ≥ 16	17 min.		8	mir.				17	min.		
Mechanical	t				40 < t 100						80	max.				
Σ	sion Test	atio %		(t) mm	16 ≦ t ≤ 40	ı					08	max.				
	Tension	Yield Ratio %		Thickness(t)	12 ≦ t < 16	I	08	max.				80 max.				
			Tensile	Strength N/mm²	t < 12			400~ 510					490	610		
					40 < t 100	2 15 min.		215~	335				295~	4 15		
		Yield point or Proof Stress	<u>_</u>	(t) mm	16 ≤ t ≤ 40	235 min.		235~	355				325~	445		
		Yield point Proof Stre	<u> </u>	Thickness(t)	12 ≦ t < 16	235 min.	235~	355				325∼ 445				
					t < 12	235 min.	235	min.				325 min.				
			Ced					0.36	max.		0.44 max.	0.46	max.	0.44 max.	0.46	тах.
%			ഗ			0.050 0.050 max. max.	0.030 0.015	тах.	0.020 0.008	тах.		0.030 0.015 max. max.			0.020 0.008 max. max.	
			۵			0.050 max.	0.030		0.020	тах.		0.030 max.			0.020 max.	
Composition			₽					0.60								
			:Ō					0.35					_			
			O			0.24 max.	0.20 max.	0.22 max.	0.20 max.	0.22 max.		max.	0.20 max.	0.18	max.	0.20 max.
		Thick-	(t)mm			6.00 	6.00 ≤ t ≤ 50.00	50.01 100 100	16.00 50.00	50.01 ≤ t ≤ 100	6.00	40.01 ≤ t ≤ 50.00	50.01 ≤ t ≤ 100	16.00 t ≤ 40.00	40.00 < t ≦ 50.00	50.01 ≤ t ≤ 100
	Grade					SN400A		0004500		000		SN490B			SN490C	50.01 0.20

Remarks: 1. Alloy elements other than those shown in the above table may be added necessary.

2. Impact test is applicable to thickness over 12.0mm of steel.

3. Ceq = C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14

4. Ultrasonic Test:

(1)SN400B and SN490B is over 13.00mm in thickness, which may be tested in accordance with JIS G0901 CL.Y if agreement between the purchaser and the manufacturer.

(2)SN400C and SN490C is 16.00mm or over, which shall be tested in accordance with JIS G0901 CL.Y

7.1.2 Shipbuilding Steel Plates

7.1.2.1 ABS (2014) Ordinary-Strength Hull Structural Steel

		(Chemical C	ompositic	on %			Tension T	est			Impact 7	est
							\\ \(\) = 1 = 1	T9-	Elonga	ation	T1		nergy rage J
Grade	С	Si	Mn	Р	S	C+Mn/6	Yield Point N/mm²	Tensile Strength N/mm²	Test piece mm	%	Test Temp °C	Parallel to rolling direction	Transverse to rolling direction
Grade A		0.50 max.	2.5×C min.								_	_	_
Grade B	0.21 max.	0.35 max.	0.80 min.	0.035	0.035	0.40	235	400~	GL =	22	0		
Grade D		0.10~	0.60 min.	max.	max.	max.	min.	520	5.65 √A	min.	-20	27 min.	20 min.
Grade E	0.18 max.	0.35	0.70 min.								-40		

Remarks: 1. When the content of soluble aluminum is not less than 0.015%, the minimum required silicon content does not apply.

- 2. For Grade A, rimmed steel sections may be accepted up to and including 12.5 mm (0.5 in.).
- 3. A maximum carbon content of 0.23% is acceptable for Grade A sections.
- 4. For Gr.B steel of cold flanging quality or when fully killed, the lower limit of manganese may be reduced to 0.60%.
- $5. \ Gr. D \ hull \ steel \ which \ is \ normalized, \ thermo-mechanical \ control \ processed \ or \ control \ rolled \ is \ to \ be \ marked \ AB/DN.$
- 6. The contents of nickel, chromium, molybdenum and copper are to be determined and reported. When the amount does not exceed 0.02%, these elements may be reported as $\leq 0.02\%$.
- 7. For Grade A sections, the upper limit of tensile strength may be 550 N/mm 2 (56 kgf/ mm 2 , 80 ksi).
- 8. Applicable thickness range of this specification is from 6.00 to 50.80mm.

7.1.2.2 ABS(2014)Higher-Strength Hull Structural Steel

					Cher	mical	Comp	osition	1 %							Mech	anical	Prope	erties	
															Tension	Test			Impact	Test
G r a															Tanaila	Elonga	ation	Toot	Ave	erage J
d e	С	Si	Mn	Р	S	Cu	Cr	Ni	Mo	Nb	V	Ti	Al	Point	Tensile Strength N/mm²	Test piece mm	%	Test Temp °C	Parallel to rolling direction	Transverse to rolling direction
AH 32 DH	-																	0 -20	t ≦ 50.0 31min.	t ≦ 50.0 22min.
32	-																	-20	50.0	50.0
EH														315 min.	440	GL = 5.65 √A	22 min.	-40	< t ≦ 70.0 38min.	< t ≦ 70.0 26min.
32																			70.0 < t ≦ 75.0 46min.	70.0 < t ≦ 75.0 31min.
AH 36																		0	t ≦ 50.0 34min.	t ≦ 50.0 24min.
DH 36	0.18 max.	?	0.90	0.035 max.	0.035 max.		0.20 max.			?	0.05	0.020	0.020 min.	355	490		21	-20	50.0 < t ≦ 70.0	50.0 < t ≦ 70.0
-	max.	0.50	1.60	max.	max.	max.	max.	max.	max.	0.05	0.10	max.	111111.	min.	{ 620		min.		4 1 min.	27min.
36																		-40	70.0 < t ≦ 75.0 50min.	70.0 < t ≦ 75.0 34min.
																GL = 5.65 √A			t ≦ 50.0 39min.	t ≦ 50.0 26min.
EH 40														390 min.	510 { 650		20 min.	-40	50.0 < t ≦ 70.0 46min.	50.0 < t ≦ 70.0 31min.
																			70.0 < t ≦ 75.0 55min.	70.0 < t ≦ 75.0 37min.
47	0.10 max.	0.55	max.	max.	0.030 max.	max.	max.	max.	max.	max.	max.	0.020	min.	min.	570 { 720		17 min.	-40	50.0 ≦ t ≦ 65.0 64min.	50.0 ≦ t ≦ 65.0 43min.

Remarks: 1. AH steel 12.5mm(0.50 in.) and under in thickness may have a minimum manganese content of 0.70%.

^{2.} When the content of soluble aluminum is not less than 0.015%, the minimum required silicon content does not apply.

^{3.} Applicable thickness range of this specification is from 6.00 to 50.80mm for AH32~EH36, for higher strength grade EH40 is 40.00~75.00mm, and for extra strength grade EH47 is 50.00~65.00mm.

7.1.3 Steel Plates for boilers and Pressure Vessels

7.1.3.1 JIS G3103-12 Carbon Steel and Molybdenum Alloy Steel Plate for Boilers and Other Pressure Vessels

	Thield		Cho	mical (Composit	tion %				М	echanic	al Prop	erties		
	Thick- ness		CHE	illicai (Jorriposii	(1011 76			Tensio	n Test			Bend Test		
Grade	(t) mm	С	Si	Mn	Р	S	Мо	Yield point N/mm²	Tensile Strength N/mm²	Elongation %, min	Test Piece	Bend Angle	Thickness (t) mm	Inside Radius	Test Piece
	t ≦ 25.0	0.24 max.								21	No.				
SB 410	25.0 < t ≦ 50.0	0.27 max.						225 min.	410~ 550		1A		$t \le 25$ 25 < $t \le 50$ 50 < $t \le 100$	0.50t 0.75t 1.00t	
	50.0 < t ≦ 100	0.29 max.		0.90						25	No. 10				
	t ≦ 25.0	0.28 max.		max.						19	No.				
SB 450	25.0 < t ≦ 50.0	0.31 max.					_	245 min.	450~ 590		IA		t ≦ 25 25 < t ≦ 100	0.75t 1.00t	
	50.0 < t ≦ 100	0.33 max.								23	No. 10				Transverse
	t ≦ 25.0	0.31 max.	0.15~ 0.40		0.020 max.	0.020 max.				17	No. 1A	180°			ਰ
SB 480	25.0 < t ≦ 50.0	0.33 max.		1.20 max.				265 min.	480~ 620				$t \le 25$ 25 < $t \le 50$ 50 < $t \le 100$	1.00t 1.00t 1.25t	rolling direction
	50.0 < t ≦ 100	0.35 max.								21	No. 10				ion
SB	t ≦ 25.0	0.18 max.						255	450~	19	No. 1A		t ≦ 25	0.50t	
450M	25.0 < t ≦ 50.0	0.21 max.		0.90			0.45~	min.	590	23	No. 10		25 < t ≦ 100	0.75t	
SB	t ≦ 25.0	0.20 max.		max.			0.60	275	480~	17	No. 1A		t ≦ 25	0.75t	
SB 480M 25.0 < t ≤	0.23 max.						min.	620	21	No. 10		25 < t ≦ 100	1.00t		

Remarks: 1. For SB450 of over 25mm in thickness, the content of C may be designated to be within 0.30%, and that of Mn may be within 1.00%.

^{2.} For tension test pieces, No.1A test piece shall be used for the steel plates of 50mm or under in thickness and No.10 test piece for that over 50mm. However, for the steel plates over 40mm in thickness, No.10 test piece may be used.

^{3.} The elongation of No.1A test piece cut off from the steel plate under 8mm in thickness shall be the values in the above table reduced by 1% for every decrease of 1mm of thickness or its fraction.

^{4.} The elongation of No.10 test piece cut off from the steel plate over 90mm in thickness shall be the values in the above table reduced by 0.5% for every increase of 12.5mm of thickness or its fraction. However, the reduction shall be limited to 3%.

^{5.} When the elongation of No.1A test piece cut off from SB450M and SB480M steel plates of over 6 mm to and excluding 20 mm in thickness is more than the value specified in the above table subtracted by 3, the test piece shall be accepted despite the above specification provided that the value of elongation in the gage length of 50 mm including the broken part is 25% or over.

7.1.3.2 ASTM A285-12 Pressure Vessel Plates, Carbon Steel, Low- and Intermediate-Tensile Strength

	Cha	minal Ca	manacition !	0/		Mechanical Pro	operties	
	Crie	ernicai Co	mposition '	70		Tension T	est	
Grade							Elong	ation
	С	Mn	Р	S	Yield Strength ksi(N/mm²)	Tensile Strength ksi(N/mm²)	Test piece in.(mm)	%
Grade A	0.17 max.				24(165)min.	45~65(310~450)	GL=8(200) GL=2(50)	27min. 30min.
Grade B	0.22 max.	0.90 max.	0.025 max.	0.025 max.	27(185)min.	50~70(345~485)	GL=8(200) GL=2(50)	25min. 28min.
Grade C	0.28 max.				30(205)min.	55~75(380~515)	GL=8(200) GL=2(50)	23min. 27min.

 $Remark \div 1. When the thickness less than 5/16 in. (8mm), See Specification A 20/A 20M for elongation adjustment.$

7.1.3.3 JIS G3115-10 Steel Plates for Pressure Vessels for Intermediate Temperature Service

		Chemic	al Co	mpositic	n %							Med	hanical	Propert	ies					
									Tensi	on Test				Bend	Test			Impac	t Tes	st
G r a	C	Si	Mn	Р	S	Ceq	poin pro stre N/	mm²	Tensile	Thick-	ngation			Thick-			Test	Cha Abso Enerç	rbed	Test
e							ne	ess mm 50 < t ≦ 100	Strength N/mm²	ness (t) mm	Test piece	% min	Bend Angle	ness (t) mm	Inside Radius	Test piece	Temp. °C	AVG	IDV	piece
SPV 235	t ≦ 0.1 100 ma	k. 0.35	1.40 max.				235 min.	2 1 5 min.	ı	$t \le 16$ t > 16 t > 40	No.1A	I		t ≦ 50 t > 50	1.0t 1.5t	No.1 transverse				V-notch, parallel
	t > 0.2 100 ma	- 1								1 / 40	110.4	24				ਰ	0			ਰ
SPV 315	0.18 max.	0.55		0.030 max.	0.030 max.	_	315 min.	295 min.	490~ 610	$t \le 16$ $t > 16$ $t > 40$		20	180°			rolling direction		47 min.	27 min.	rolling direction
SPV 355	0.20 max.	max.	1.60 max.				355 min.	335 min.	520~ 640	$t \le 16$ $t > 16$ $t > 40$	No.1A	I		_	1.5t					
SPV 410	0.18 max.	0.75 max.					1	390 min.	l	$t \le 16$ $t > 16$ $t > 40$		I					-10			

Remarks: 1. Alloy elements other than those shown in the above table may be added if necessary.

^{2.} Applicable thickness range of this specification is from 6.00 to 50.80mm.

 $^{2. \} Ceq(\%) = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14.$

^{3.} Impact test is applicable to thickness over 12.0mm of steel.

 $^{4.\}mbox{\ensuremath{\mbox{Applicable}}}$ thickness range of this specification is from 6.00 to 50.80mm

7.1.3.4 ASTM A515-10 Pressure Vessel Plates, Carbon Steel, for Intermediate - and High-Temperature Service

			Chemica	I Comp	osition %			Tension	Test	
Grade	Thickness						Yield	Tensile	Elongat	on
arade	(t) mm	С	Si	Mn	Р	S	strength ksi (N/mm²)	strength ksi (N/mm²)	Test piece in.(mm)	%
	t ≦ 25.40	0.24 max.								
Grade 60	25.40 < t ≤ 50.80	0.27 max.					32(220) min.	60~80 (415~550)	GL=8(200) GL=2(50)	21min. 25min.
	50.80 < t ≤ 101.60	0.29 max.		0.90						
	t ≦ 25.40	0.28 max.	0.45	max.						
Grade 65	25.40 < t ≤ 50.80	0.31 max.	0.15~ 0.40		0.025 max.	0.025 max.	35(240) min.	65~85 (450~585)	GL=8(200) GL=2(50)	19min. 23min.
	50.80 < t ≤ 101.60	0.33 max.								
	t ≦ 25.40	0.31 max.								
Grade 70	25.40 < t ≤ 50.80	0.33 max.		1.20 max.			38(260) min.	70~90 (485~620)	GL=8(200) GL=2(50)	17min. 21min.
	50.80 < t ≤ 101.60	0.35 max.								

 $Remark \div 1. \ When the \ thickness \ less \ than \ 5/16 \ in (8mm), See \ Specification \ A 20/A 20M \ for \ elongation \ adjustment.$

^{2.} For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum is permitted, up to a maximum of 1.50%.

7.1.3.5 ASTM A516-10 Pressure Vessel Plates, Carbon Steel, for Moderate-and Lower-Temperature Service

			Chemical	Composit	ion %			Tensio	n Test	
Grade	Thickness						Yield	Tensile	Elongat	ion
Grade	(t) mm	С	Si	Mn	Р	S	strength ksi (N/mm²)	strength ksi (N/mm²)	Test piece in.(mm)	%
	t ≦ 12.70	0.18 max.		0.60~ 0.90			20			
Grade 55	12.70 < t ≦ 50.80	0.20 max.		0.60~			30 (205) min.	55~75 (380~515)	GL=8(200) GL=2(50)	23min. 27min.
	50.80 < t ≤ 101.60	0.22 max.		1.20						
	t ≦ 12.70	0.21 max.		0.60~ 0.90			0.2			
Grade 60	12.70 < t ≦ 50.80	0.23 max.		0.85~			32 (220) min.	60~80 (415~550)	GL=8(200) GL=2(50)	2 1min. 25min.
	50.80 < t ≤ 101.60	0.25 max.	0.15~	1.20	0.025	0.025	111111.			
	t ≦ 12.70	0.24 max.	0.40		max.	max.	2.5			
Grade 65	12.70 < t ≤ 50.80	0.26 max.					35 (240) min.	65~85 (450~585)	GL=8(200) GL=2(50)	19min. 23min.
	50.80 < t ≤ 101.60	0.28 max.		0.85~			111111.			
	t ≦ 12.70	0.27 max.		1.20			2.0			
Grade 70	12.70 < t ≤ 50.80	0.28 max.					38 (260) min.	70~90 (485~620)	GL=8(200) GL=2(50)	17min. 21min.
	50.80 < t ≤ 101.60	0.30 max.								

Remarks: 1. For each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum is permitted, up to a maximum of 1.50%.

7.1.3.6 ASTM A537-13 Pressure Vessel Plates, Heat-treated, Carbon-Manganese-Silicon Steel

				Che	emical C	ompositi	on %					Tension	Test	
Out als	Thick- ness										Yield	Tensile	Elongation	
Grade	(t) mm	С	Si	Mn	Р	S	Cu	Ni	Cr	Mo	strength ksi (N/mm²)	strength ksi (N/mm²)	Test piece in.(mm)	% min
Class 1	6.00 ≦ t ≦ 38.10	0.24	0.15~	0.70~ 1.35	0.025	0.025	0.35	0.25	0.25	0.08	50 (345)	70~90	GL=8(200)	18
Cid55 I	38.11 ≦ t ≦ 50.80	max.	0.50	1.00~ 1.60	max.	max.	max.	max.	max.	max.	min.	(485~620)	GL=2(50)	22

Remarks: 1. When the thickness 1½ in.(38.1mm) and under, manganese may exceed 1.35%, up to a maximum of 1.60%, and nickel may exceed 0.25%, up to a maximum of 0.50%, provided the heat analysis carbon equivalent does not exceed 0.57% when based upon the following equation:

CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Grade 60 plates 1/2 in.(12.7mm) and under in thickness may have 0.85~1.20% manganese on heat analysis, and 0.79~1.30% manganese on product analysis.

^{3.} When the thickness less than 5/16 in(8mm), see specification A20/A20M for elongation adjustment.

^{4.} When the thickness is over 1½ in.(38.1mm) and shall be normalized.

^{2.} When the thickness less than 5/16 in.(8mm), see specification A20/A20M for elongation adjustment.

^{3.} Class 1(All thickness) plates shall be normalized.

7.1.4 Steel Plates for Machine Structural Usage (ex: Abrasion Resisting)

7.1.4.1 JIS G4051 - 09 Steel Plates for Machine Strctural Usage

		Cher	mical Composition	% ⁽¹⁾		
Grade	Thickness (mm)	С	Si	Mn	Р	S
S10C	t ≧ 7.90	0.08~0.13		0.30~0.60		
S12C	t ≧ 7.90	0.10~0.15		0.30~0.60		
S15C	t ≧ 7.90	0.13~0.18		0.30~0.60		
S17C	t ≧ 7.90	0.15~0.20		0.30~0.60		
S20C	t ≧ 7.90	0.18~0.23		0.30~0.60		
S22C	t ≧ 7.90	0.20~0.25		0.30~0.60		
S25C	t ≧ 7.90	0.22~0.28		0.30~0.60		
S28C	t ≧ 7.90	0.25~0.31		0.60~0.90		
			0.15~0.35		0.030max.	0.035max
S30C	t ≧ 7.90	0.27~0.33		0.60~0.90		
S33C	t ≧ 7.90	0.30~0.36		0.60~0.90		
S35C	t ≧ 7.90	0.32~0.38		0.60~0.90		
S38C	t ≧ 7.90	0.35~0.41		0.60~0.90		
S40C	t ≧ 7.90	0.37~0.43		0.60~0.90		
S43C	t ≧ 7.90	0.40~0.46		0.60~0.90		
S45C	t ≧ 7.90	0.42~0.48		0.60~0.90		
S48C	t ≧ 7.90	0.45~0.51]	0.60~0.90		
]			
S50C	t ≧ 7.90	0.47~0.53]	0.60~0.90		
S53C	t ≧ 7.90	0.50~0.56]	0.60~0.90		
S55C	t ≧ 7.90	0.52~0.58]	0.60~0.90		
S58C*	t ≧ 7.90	0.55~0.61]	0.60~0.90		
			1			

7.1.4.2 CSC PC Machine Structural Usage (over-thickness)

Chemical Composition %															
Grade	Thickness (mm)	Thickness (mm) C Si Mn P S													
PC1050 ⁽⁴⁾	t > 125	0.47~0.53	0.15~0.35	0.60~0.90	0.030max.	0.035max.									

7.1.4.3 SAE (2009) General Carbon Machine Strctural Usage

		Ch	emical Composition	%		
Grade	Thickness (mm)	С	Si	Mn	Р	S
1005	t ≧ 7.90	0.06max.		0.35max.		
1006	t ≧ 7.90	0.08max.		0.25~0.40(2)		
1008	t ≧ 7.90	0.10max.		0.30~0.50(2)		
1009	t ≧ 7.90	0.15max.		0.60max.		
1010	t ≧ 7.90	0.08~0.13				
1012	t ≧ 7.90	0.10~0.15		0.30-0.60		
1013	t ≧ 7.90	0.11~0.16		0.30-0.00		
1015	t ≧ 7.90	0.13~0.18				
1016	t ≧ 7.90	0.13/90.18		0.60~0.90		
1017	t ≧ 7.90			0.30~0.60		
1018	t ≧ 7.90	0.15~0.20		0.60~0.90		
1019	t ≧ 7.90			0.70~1.00		
1020	t ≧ 7.90			0.30~0.60		
1021	t ≧ 7.90	0.18~0.23		0.60~0.90		
1022	t ≧ 7.90			0.70~1.00		
1023	t ≧ 7.90	0.20~0.25		0.30~0.60		
1025	t ≧ 7.90	0 22-0 28		0.30~0.60		
1026	t ≧ 7.90	0.22~0.28		0.60~0.90		
1029	t ≧ 7.90	0.25~0.31	_	0.60~0.90	0.030max.	0.050max.
1030	t ≧ 7.90	0.28~0.34		0.60~0.90		
1033	t ≧ 7.90	0.30~0.36		0.70~1.00		
1035	t ≧ 7.90	0.22.0.20		0.60~0.90		
1037	t ≧ 7.90	0.32~0.38		0.70~1.00		
1038	t ≧ 7.90	0.35~0.42		0.60~0.90		
1039	t ≧ 7.90	0.07.044		0.70~1.00		
1040	t ≧ 7.90	0.37~0.44		0.60~0.90		
1042	t ≧ 7.90	0.40-0.47		0.60~0.90		
1043	t ≧ 7.90	0.40~0.47		0.70~1.00		
1044	t ≧ 7.90			0.30~0.60		
1045	t ≧ 7.90	0.43~0.50		0.60~0.90		
1046	t ≧ 7.90			0.70~1.00		
1049	t ≧ 7.90	0.46~0.53		0.60~0.90		
1050	t ≧ 7.90	0.40, 0.55		0.60~0.90		
1053	t ≧ 7.90	0.48~0.55		0.70~1.00		
1055	t ≧ 7.90	0.50~0.60		0.60~0.90		
1060*	t ≧ 7.90	0.55~0.65		0.60~0.90		

Remarks: 1. Cr shall not be over 0.20%. However, it may be specified as values under 0.30% upon the agreement between the manufacturer and the purchaser.

2. For grades 1006 and 1008 applicable to structural shapes, plates, strip or sheet, the manganese limit is 0.45% and 0.50% maximum, respectively, with no minimum.

^{3.} With regards to upper limit of above table and the symbol * shall be inquiry before placing the order.

^{4.} PC1050 needs to be agreement between the purchaser and the manufacturer before placing the order.

7.1.4.4 Alloy Machine Strctural Usage (Abrasion Resisting)

			Che	emical Composition	%		
	Grade	Thickness (mm)	С	Si	Mn	Р	S
	1330	t ≧ 7.90	0.28 ~ 0.33		1.60 ~ 1.80		
ı	1335	t ≧ 7.90	0.33 ~ 0.38	0.15~0.35		0.030max.	0.040max.
	1340	t ≧ 7.90	0.38 ~ 0.43	0.15~0.35	$1.60\sim1.90$	0.030max.	0.040max.
	1345	t ≧ 6.00	0.43 ~ 0.48				

7.1.5 Atmospheric Corrosion Resistant Steel Plates

7.1.5.1 CSC-specification plate for Sulfur Dew-Point Corrosion-Resistance

	Thick-			Ck	nemical	Compo	oition 0/						Mechanical	Proper	ties		
	ness			Ci	lerriicai	Compos	SILIOI 70	'				Tensi	on Test		E	Bend Te	est
Grade	(t) mm	С	Si	Mn	Р	S	Cu	Ni	Cr	Ti	Yield Point N/mm²	Tensile Strength N/mm²	Elongation %			Inside Radius	Test piece
SCR TEN2					0.025 max.	0.035 max.	0.20 2 0.50	0.50 max.	0.50 2 1.00	0.15 max.			18 min.	No.1A			
SCR	6.00 ≦ t ≦ 20.00	0.14 max.	0.15 2 0.55	0.90 max.	0.035		0.25	_	0.80	Sb	325 min.	440 min.	22	No.5	180°	1.5t	No.1
TEN3					max.	max.	0.50		1.30	0.15 max.			min.				

7.1.5.2 CSC-specification plate for Galvanizing Pot

Grade	Thickness(t)		Ch	nemical Composition	%	
Grade	mm	С	Si	Mn	Р	S
GP1	6.00	0.07 max.	0.02 max.	0.35 max.	0.020 max.	0.020
GP2	≦ t ≦ 50.80	0.15	0.03 max.	0.90 max.	0.012 max.	max.

7.1.5.3 JIS G3114-08 Hot-Rolled Atmospheric Corrosion Resisting Steels for Welded Structure

														Mechanic	al Prop	erties				
										\\(\frac{1}{2} = 1	- D		Tension	Test				lm	pact Test	
				Ch	emical C	Compositi	on %			Pro	of St	1 ²		Eld	ongation				Charpy	
Grad	e	О	Si	Mn	Р	S	Cu	Cr	Ni		t) n 16 < t≦ 40		Tensile Strength N/mm²	Thick- ness (t) mm	Test piece	% min.	Symbol	Test temp °C	Absorbed Energy Average J	Test piece
	W		0.15				0.30	0.45	0.05								А	_	_	
SMA 400	VV		0.65	1.25			0.50		0.30	245	235	215	400	t ≦ 16 t > 16	No.1A No.1A	17 21	В	0	27 min.	
A.B.C.	Р		0.55 max.	max.			0.20 2 0.35	5	_	min.	min.	min.	540	t > 40	No.4	23	С	0	47 min.	V-Notch
			0.15				0.30		0.05								А	_	_	otch in
SMA 490	W	0.18	o.65		0.035	0.035	0.50	0.75	0.30	365	355	335	490 2	t ≦ 16 t > 16	No.1A No.1A	15 19	В	0	27 min.	rolling
A.B.C.	Р	max.	0.55 max.	1.40	max.	max.	0.20 2 0.35	5	_	min.	min.	min.	610	t > 40	No.4	21	С	0	47 min.	direction
*	W		0.15 2 0.65	max.			0.30 2 0.50	S	0.05	460	450	430	570 2	t ≦ 16 t > 16	No.5 No.5	19		-5	47	
SMA 570	Р		0.55 max.				0.20 2 0.35	5	_	min.	min.	min.	720	t > 16 t > 20	No.4	26 20		-5	min.	

Remarks: 1. The letter symbol 'W' denotes that the plates are usually used in the delivered condition or chemically treated against rusting, while 'P' denotes that they are usually used after coated.

- 2 .The elements effective for the atmospheric corrosion resistance, such as Mo, Nb, Ti, V and Zr may be added to any grade of plates, provided that the total content of these elements does not exceed 0.15%.
- 3. Pertaining to the charpy absorbed energy, the value higher than those shown in the above table may be agreed upon by the parties concerned.
- 4. Impact test is applied only to the plates exceeding 12.00mm in thickness.
- 5. The symbol * means that shall be inquiry before placing the order.
- 6.Applicable thickness range of this specification is from 6.00 to 50.00mm

7.1.5.4 ASTM A242-13 High-Strength Low-alloy Structural Steel

		Chemic	al Compo	osition %			Tensio	on Test		
Crada								Tensile	Elongation	1
Grade	С	Mn	Р	S	Cu	Thickness (t)mm	Yield point ksi(N/mm²)	strength ksi(N/mm²)	Test piece in.(mm)	% min.
						t ≦ 19.05	50(345) min.	70 (480) min.	01 07300	
Type 1	0.15 max.	1.00 max.	0.150 max.	0.050 max.	0.20 min.	19.05 < t ≤ 38.10	46(315) min.	67(460) min.	GL=8(200) GL=2(50)	18
						38.10 < t ≤ 101.6	42(290) min.	63(435) min.	GL-2 (30)	

 $Remarks \div 1. \ For plates \ wider \ than \ 24 \ in. (600 mm), \ the \ elongation \ requirement \ is \ reduced \ two \ percentage \ points.$

7.1.5.5 ASTM A588-10 HSLA Structural Steel up to 50 ksi min Yield Point, Atmospheric Corrosion Resistance

				(Chemical	Compo	sition %						Tension	Test	
Cando												Yield	Tensile	Elongati	on
Grade	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	point ksi (N/mm²)	strength ksi (N/mm²)	Test piece in.(mm)	% min
Grade	0.19	0.30	0.80			0.25 2	0.40	0.40		0.02					
А	max.	0.65	1.25			0.40	max.	0.65		0.10				GL=	
Grade B	0.20 max.	0.15 2 0.50	0.75 2 1.35	0.040 max.	0.050 max.	0.20 2 0.40	0.50 max.	0.40 2 0.70		0.01 2 0.10		50 (345) min.	70 (485) min.	8(200) GL=	18
Grade K	0.17 max.	0.25 2 0.50	0.50			0.30	0.40 max.	0.40 2 0.70	0.10 max.	_	0.005			2(50)	21

Remarks: 1. For each reduction of 0.01% below the specified maximum for carbon, an increase of 0.06% above the specified maximum for manganese is permitted, up to a maximum of 1.50%.

- 2. Gr.K for plates under 1/2 in.(12.70mm) in thickness, the minimum columbium is waived.
- 3. For plates wider than 24 in.(600mm), the elongation requirement is reduced two percentage points.
- $4. \ When the thickness less than 5/16 in (8mm), See Specification A6/A6M for elongation adjustment.$
- $5. Applicable thickness range of this specification is from <math display="inline">6.00 \ to \ 50.80 mm$

For nominal thickness under 5/16 in.(8mm), the deduction from the specified percentage of elongation in 8 in.(200mm) shall be made for decreases of the nominal thickness below 5/16 in.(8mm). See elongation requirement adjustments under the Tension Tests Section of Specification A6 for deduction values.

7.1.6 Steel Plates for API 5L-2007 (ISO 3183) Line Pipe Usage

						CI	nemica	al Com	oosition	%				Tensio	n Test
Level	Grade	Thickness t(mm)	С	Mn	Р	S	Si	Nb	V	Ti	Ni+V +Ti	(7) CEiiw	(8) CEpcm	Yield Strength ksi (N/mm²)	Tensile Strength ksi (N/mm²)
	А	6.00 ≤ t ≤ 50.80	0.22 max.								_			30.5(210) min.	48.6(335) min.
	B ⁽⁵⁾	6.00 ≦ t ≦ 50.80		1.20 max.										35.5(245) min.	60.2(415) min.
	X42	6.00 ≦ t ≦ 27.00		1.30 max.										42.1(290) min.	60.2(415) min.
	X46	_									0.15 max.			46.4(320) min.	63.1(435) min.
PSL1	X52	7.93 ≦ t ≦ 27.00	0.26	1.40	0.030 max.	0.030 max.	_	_	_	_		_	_	52.2(360) min.	66.7(460) min.
-	X56	_	max.	max.										56.6(390) min.	71.1(490) min.
	X60	9.00 ≦ t ≦ 19.50												60.2(415) min.	75.4(520) min.
	X65	10.00 ≦ t ≦ 26.00		1.45 max.							(6)			65.3(450) min.	77.6(535) min.
	X70	15.00 ≦ t ≦ 30.00		1.65 max.										70.3(485) min.	82.7(570) min.
	ВМ	15.00 ≦ t ≦ 50.80		1.20 max.										35.5~65.3 (245~450)	60.2~110.2 (415~760)
	X42M	15.00 ≦ t ≦ 27.00		1.30				0.050 max.	0.050 max.	0.040 max.	_			42.1~71.8 (290~495)	60.2~110.2 (415~760)
	X46M	_	0.22 max.	max.										46.4~76.1 (320~525)	63.1~110.2 (435~760)
PSL2	X52M	15.00 ≦ t ≦ 27.00		1.40	0.025	0.015	0.45				0.15	0.43	0.25	52.2~76.9 (360~530)	66.7~110.2 (460~760)
FSLZ	X56M			max.	max.	max.	max.				max.	max.	max.	56.6~79.0 (390~545)	71.1~110.2 (490~760)
:	X60M	15.00 ≦ t ≦ 19.50		1.60				_	_	_				60.2~81.9 (415~565)	75.4~110.2 (520~760)
	X65M	15.00 ≦ t ≦ 26.00	0.12 max.	max.							(6)			65.3~87.0 (450~600)	77.6~110.2 (535~760)
	X70M	15.00 ≦ t ≦ 30.00		1.70 max.										70.3~92.1 (485~635)	82.7~110.2 (570~760)

Remarks: 1. Gr.A through Gr.X70 for each reduction of 0.01% below the specified maximum carbon content, an increase of 0.05% above the specified maximum manganese content is permissible, but:

- · X42~X52 : Maximum manganese content is applicable to 1.50%.
- · X56~X65 : Maximum manganese content is applicable to 1.65%.
- \cdot X70 : Maximum manganese content is applicable to 2.00%.
- $2.\ Niobium, vanadium, or combinations thereof may be used at the discretion of the manufacturer.$
- 3. The sum of the niobium, vanadium, and titanium contents shall not exceed 0.15%.
- 4 .Gr.60 through Gr.X70 are permissible to add other chemical compositions by agreement between purchaser and manufacturer.
- 5. Elongation values are according to Specification of API 5L-2007 (ISO 3183).
- $6. \ The sum of niobium and vanadium contents shall not exceed 0.06\% \ except for agreement between purchaser and manufacturer.$
- 7. Carbon Equivalent CEiiw(%) = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15.
- 8. Carbon Equivalent CEpcm(%) = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mn/15 + V/10 + 5B.

7.1.7 Chemical Composition and Mechanical Property for New Products

7.1.7.1 ASTM A841-13 Gr. B Class 2 (For Welded Pressure Vessels use)

		Ch	emical	Composit	ion %			Tension T	est		Impact	t Test
Thickness							Yield	Tensile	Elonga	ation	Test	Charpy
Thickness (t) mm	С	Si	Mn	Р	S	Tot-Al	Strength ksi (N/mm²)	Strength ksi (N/mm²)	Test piece in.(mm)	%	Temp°C / Test direction	Absorbed Energy Average J
15.00 ≦ t ≦ 38.10	0.15	0.15	0.70 2 1.35	0.030	0.025	0.020	60 (415)	80~100	GL=2	22	- 40 /	20
38.10 < t ≦ 63.50	max.	0.50	1.00 2 1.60	max.	max.	min.	min.	(550~690)	(50)	min.	in rolling direction	min.

Remarks: 1. When the thickness 1½ in.(38.1mm) and under, Manganese may exceed 1.35% on heat analysis, up to a maximum of 1.60%, provided that the carbon equivalent on heat analysis does not exceed 0.47%, or the value specified in Supplementary Requirement S77 When that requirement is invoked, when based on the following formula: CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

- 2. By agreement, the steel may be produced with titanium, in which case the minimum aluminum content shall not apply. When this option is exercised, the titanium content, by heat analysis, shall be 0.006% to 0.02%.
- 3. For each reduction of 0.01 percentage point below the specified maximum for carbon, an increase of 0.06 percentage points above the specified maximum for manganese is permitted, up to a maximum of 1.85%.

7.1.7.2 JIS G3101 SS400 (Plates for Laser cutting ues)

								Tension Tes	st		
Thickness		Chemic	al Comp	osition %)		or Yield Strength /mm²	Tensile	Elong	ation	
(t) mm 12.00 ≤ t ≤ 25.00						Thickne	ss (t) mm	Strength	Thickness	Test	%
	С	Mn	Р	S	Si	12.0 ≦ t ≦ 16.0	16.0 < t ≦ 25.0	N/mm²	(t) mm	Piece	min.
	0.25	1.35	0.030	0.030	0.50	245	235	400~	12 ≦ t ≦ 16		17
	max.	max.	max.	max.	max.	min.	min.	510	16 < t ≦ 25	No.1A	21

7.1.7.3 CSC LYS100 (Low Yield Strength Steel plate for Building Construction use)

		Tensio	n Test	
Thickness (t) mm	Yield Strength	Tensile Strength	Elonç	gation
(0)	N/mm²	N/mm²	Test Piece	%
6.00 ≤ t < 20.00	70~120	200~300	JIS No.5	50min.
20.00 ≤ t ≤ 50.80	70~120	200~300	JIS No.4	5011111.

7.1.7.4 CSC PZ30H Plates for Die of pressing

Thickness				Chemical Co	mposition %				
(t) mm	C Si Mn P S Ni Cr								
15 ≦ t ≦ 85	0.35max.	_	0.80min.	_	_	_	1.70max.	0.45max.	

Remarks: 1. There is no mechanical properties requirements for die for pressing of plates.

7.1.7.5 JIS G4053 SCM440 Nickel Chromium Steels for Machine Structural Use

Thickness				Chemi	ical Composi	tion %			
(t) mm	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо
12 ≦ t ≦ 125	0.38~ 0.43	0.15~ 0.35	0.60~ 0.90	0.030 max.	0.030 max.	0.30 max.	0.25 max.	0.90~ 1.20	0.15~ 0.30

Remarks \div 1. There is no mechanical properties requirements for die for pressing of plates.

^{2.} This is applicable afterwards quenching and tempering process.

^{2.} This is applicable afterwards quenching and tempering process.

7.1.7.6.1 CNS 13812-12 SN490YB (Rolled steels for building structure)

		Che	mical C	Compositi	ion %				Mech	anical Pr	opertites		
Thickness							Yield	Tensile	Yield	Elon	gation	Impact	Test
(t) mm	С	Si	Mn	Р	S	Ceq	Strength N/mm ²	Strength N/mm ²	Ratio %	Test piece	%	Temp/Test Direction	AVG Joule
6 ≤ t ≤ 16						0.44				No.1A	17min.	0°C /	
16 < t ≤ 40	0.18	0.55	1.60	0.030	0.015	max.	325~	490~	80	NO. TA	21min.	0°C / Parallel	27
40 < t ≤ 50	max.	max.	max.	max.	max.	0.46	445	610	max.	No.4	23min.	to rolling direction	min.
50 < t ≤ 80						max.				110.4	2311111.	un ection	

7.1.7.6.2 CNS 13812-12 SN490YC (Rolled steels for building structure)

		Che	mical (Composit	ion %				V	lechanica	al Prop	ertites		
Thickness							Yield	Tensile	Yield	Elong	ation	ZRa%	Impact	Test
(t) mm	С	Si	Mn	Р	S	Ceq	Strength N/mm²	Strength N/mm²	Ratio %	Test piece	%	AVG/ IDV min	Temp/ Test Direction	AVG Joule
t= 16											17 min.			
						0.44				No.1A			0℃ /	
16 < t ≤ 40	0.18	0.55			0.008	max.	325~	490~	80		21 min.	25/15	Parallel to	27
40 < t ≦ 50	max.	max.	max.	max.	max.	0.46	445	610	max.		22		rolling	min.
						0.46 max.				No.4	23 min.		direction	
50 < t ≤ 80						max.					1111111.			

 $Remarks: Carbon \ Equivalent \ Ceq(\%) = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14. \ (This is applicable for non-TMCP supply of condition only)$

7.1.7.7 CSC PZ590T (The most excellent strength plate for structural use)

		Che	mical C	Compositi	ion %					Mechanic	cal Prop	pertites			
									Elonga	tion %	ZR	a%	lr	mpact T	est
Thickness (t) mm	С	Si	Mn	Р	S	Cea	YS	TS	No.5	No.4	thickne m	ess(t) m			
(()		Oi		,		Ocq	N/mm²	N/mm²	thicknes	s(t)mm	20 <	t ≦ 80	Temp °C	AVG Joule	Test piece
									15 ≦ t ≦ 20	20 < t ≦ 80	AVG	IDV	Ü	Jouic	piece
15 ≦ t ≦ 40	0.09	0.55	1.80	0.020	0.008	0.44 max.	440	590	20	20	25	15		47	Parallel to
	max.	max.	max.	max.	max.	0.47 max.	min.	740	min.	min.	min.	min.	-5	min.	rolling direction

 $Remarks: 1. \ Carbon \ Equivalent \ \ Ceq(\%) = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14.$

7.1.7.8 CSC PH490TB (Fire resistant steel plates)

		Che	mical C	Compositi	on %				Λ	1echanica	Propertit	es		
Thickness									V:-1-l		tion % .1A)		Impact 7	Гest
(t) mm	С	Si	Mn	Р	S	Ceq	YS N/mm²	TS N/mm²	Yield Ratio	thicknes	s(t)mm	Т	A) (C	Taat
							147 111111	1 1/ 11 11 11	%	12 < t ≦ 16	16 < t ≦ 30	Temp ℃	AVG Joule	Test piece
	0.18	0.55	1.60	0.030	0.015	0.44	325~	490~	80	17	21		27	Parallel to
$12 < t \ge 301$	max.	max.	max.	max.	max.	max.	445	610	max.	min.	min.	0	min.	rolling direction

Remarks : The product properties could be maintained by 2/3 yield strength of room temperature in 600° C .

^{2.} Impact test is applied only to the plates exceeding 12 mm in thickness.

^{3.} It needs not to be performed in ZRa% test if below 20mm in thickness except for agreement between purchaser and manufacturer.

7.1.7.9 CSC SM570M (Building Structure with excellent strength and weldability)

	thick-		Che	mical C	Compositi	on %		Mechanical Propertites								
Grade	ness							YS	TS	Yield	EL	ZR	a%	-5°	°C Impact	test
(Level)	(t) mm	С	Si	Mn	Р	S	Ceq		N/mm²	Ratio %	%	AVG	IDV	Position	AVG Joule	Test piece
А	13 ≦ t < 50									85 max.	(1)	_	_	t/4	47min.	
	13 ≦ t ≦ 40	0.18	0.55	1.60	0.030	0.008	0.44 max.			85 max.	(1)	_	_	t/4	47min.	
В	40 < t < 50	max.	max.	max.	max.	max.				80	(1)	-	_	t/4	47min.	V-notch
	50 ≦ t ≦ 60						0.46 max.	420	570	max.	20	25 min.	15 min.	t/4 t/2	47min. 27min.	test piece
С	16 ≦ t < 50						0.44 max.	540	720	85	(1)	25	15	t/4	47min.	in rolling
	50 ≦ t ≦ 80	0.18	0.55	1.60	0.020	0.008	0.46 max.			max.	20	min.	min.	t/4 t/2	47min. 27min.	direction
(2)	16 ≦ t < 50	max.	max.	max.	max.	max.	0.44 max.			85	(1)	25	15	t/4	47min.	
C HW	50 ≦ t ≦ 80						0.46 max.			max.	20	min.	min.	t/4 t/2	47min. 27min.	

Remarks : 1. The individual value (IDV) of percent elongation shall be 19 min(t \leq 16mm) and 26 min(16 < t \leq 20mm) separatedly if below 20mm in thickness. The E.L% is 20 mininum if over 20mm in thickness.

7.1.7.10 ASTM A516 HIC (The pressure vessel of Hydrogen Induced Crack resistant)

Grade		Chemical Composition %						Mechanical Propertites			
	Thickness(t) mm							YS	TS	Elongation	
		С	Si	Mn	Р	S	Ceq	N/mm²	N/mm²	Test % piece % No.1A 21 min.	%
GR.60	$6.00 \le t \le 50.80$	0.20	0.15~	0.60~	0.010	0.003	0.42	220	415~550	No.1A	
	50.80 < t ≤ 58.00	max.	0.40	1.20	max.	. max.	max.	min.		No.4	
GR.70	6.00 ≤ t ≤ 50.80	0.20 max.	0.15~ 0.40	0.85~ 1.20	0.010 max.	0.002 max.	0.42 max.	260 min.	485~620	No.1A	17 min.

Remarks : 1. The guarantee of crack length ratio (CLR) shall be 15% in maximum except for agreement between purchaser and manufacturer.

^{2.} The grade C HW is fit to high heat input welding. The heat affected zone (HAZ) is permitted by 880 KJ/cm in input welding. The temp. -5° C of impact test in fusion line shall be achieved above 15 Joules in guarantee.

^{3.} Carbon Equivalent Ceq(%) = C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14.

^{2.} Carbon Equivalent Ceq(%) = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15.

^{3.} This product specification shall be normalized and simulated post weld heat treatment.

7.2 Tolerances

7.2.1 JIS G3193 Thickness Tolerances of Steel Plates

unit: mm

Width (w) Thickness (t)	800 ≦ w < 1600	1600 ≦ w < 2000	2000 ≦ w < 2500	2500 ≤ w < 3150	3150 ≤ w < 4000
6.00 ≤ t < 6.30	±0.50	±0.60	±0.60	±0.75	±0.75
6.30 ≤ t < 10.0	±0.55	±0.65	±0.65	±0.80	±0.80
10.0 ≦ t < 16.0	±0.55	±0.65	±0.65	±0.80	±0.80
16.0 ≦ t < 25.0	±0.65	±0.75	±0.75	±0.95	±0.95
25.0 ≦ t < 40.0	±0.70	±0.80	±0.80	±1.00	±1.00
40.0 ≦ t < 63.0	±0.80	±0.95	±0.95	±1.10	±1.10
63.0 ≦ t < 100	±0.90	±1.10	±1.10	±1.30	±1.30
100 ≦ t ≦ 125	±1.30	± 1.50	± 1.50	±1.70	± 1.70

Remarks: 1. When required, the tolerance in the above table may be one-sided either minus or plus side, provided that the total range of the tolerance

in this case shall be equal to the total range of the tolerance given in the above table.

7.2.2 JIS G3136(SN) Thickness Tolerances of Steel Plates

unit: mm

Width (w) Thickness (t)	800 ≤ w < 1600	1600 ≦ w < 2000	2000 ≦ w < 2500	2500 ≤ w < 3150	3150 ≤ w < 4000
6.00 ≤ t < 6.30	+ 0.70	+ 0.90	+ 0.90	+ 1.20	+ 1.20
6.30 ≤ t < 10.0	+ 0.80	+ 1.00	+ 1.00	+ 1.30	+ 1.30
10.0 ≦ t < 16.0	+ 0.80	+ 1.00	+ 1.00	+ 1.30	+ 1.30
16.0 ≦ t < 25.0	+ 1.00	+ 1.20	+ 1.20	+ 1.60	+ 1.60
25.0 ≤ t < 40.0	+ 1.10	+ 1.30	+ 1.30	+ 1.70	+ 1.70
40.0 ≦ t < 63.0	+ 1.30	+ 1.60	+ 1.60	+ 1.90	+ 1.90
63.0 ≦ t < 100	+ 1.50	+ 1.90	+ 1.90	+ 2.30	+ 2.30
100	+ 2.30	+ 2.70	+ 2.70	+ 3.10	+ 3.10

Remarks: 1. The minus side of thickness tolerance shall be -0.30mm.

7.2.3 JIS G3103(SB) , JIS G3115(SPV) Thickness Tolerances of Steel Plates

unit: mm

Width (w) Thickness (t)	800 ≦ w < 1600	1600 ≦ w < 2000	2000 ≦ w < 2500	2500 ≤ w < 3150	3150 ≦ w < 4000
6.00 ≤ t < 6.30	+ 0.75	+ 0.95	+ 0.95	+ 1.25	+ 1.25
6.30 ≦ t < 10.0	+ 0.85	+ 1.05	+ 1.05	+ 1.35	+ 1.35
10.0 ≦ t < 16.0	+ 0.85	+ 1.05	+ 1.05	+ 1.35	+ 1.35
16.0 ≦ t < 25.0	+ 1.05	+ 1.25	+ 1.25	+ 1.65	+ 1.65
25.0 ≦ t < 40.0	+ 1.15	+ 1.35	+ 1.35	+ 1.75	+ 1.75
40.0 ≦ t < 63.0	+ 1.35	+ 1.65	+ 1.65	+ 1.95	+ 1.95
63.0 ≦ t < 100	+ 1.55	+ 1.95	+ 1.95	+ 2.35	+ 2.35

Remark: The minus side tolerance on thickness shall be -0.25mm.

^{2.} The positions where the thickness is to be measured shall be as follows:

[•] For as-rolled steel plates with edge untrimmed, any point inward from the line of width predetermined to be cut.

 $^{^{\}bullet}$ For cut-edged steel plates, any point 15mm and over inward from the edge.

^{3.} The above table does not apply to the pressure vessel plates.

^{2.} The positions where the thickness is to be measured shall be as follows:

[•] For as-rolled steel plates with edge untrimmed, any point inward from the line of width predetermined to be cut.

[•] For cut-edged steel plates, any point 15mm and over inward from the edge.

$7.2.4\,\text{ASTM}\,\text{A6}$, ASME SA6 Thickness Tolerances of Steel Plates

unit: mm

Width (w) Thickness (t)	800 ≦ w < 1219	1219 ≦ w < 1524	1524 ≦ w < 1829	1829 ≦ w < 2134	2134 ≦ w < 2438	2438 ≦ w < 2743	2743 ≦ w < 3048	3048 ≦ w < 3353	3353 ≦ w < 3658	3658 ≦ w < 4267
6.00 ≤ t < 6.35	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	1.02	_
6.35 ≦ t < 7.94	0.76	0.76	0.76	0.76	0.76	0.76	0.76	1.02	1.02	_
7.94 ≦ t < 9.53	0.76	0.76	0.76	0.76	0.76	0.76	0.76	1.02	1.02	1.27
9.53 ≦ t < 11.11	0.76	0.76	0.76	0.76	0.76	0.76	1.02	1.02	1.27	1.52
11.11 ≦ t < 12.70	0.76	0.76	0.76	0.76	0.76	0.76	1.02	1.02	1.27	1.52
12.70 ≦ t < 15.88	0.76	0.76	0.76	0.76	0.76	0.76	1.02	1.02	1.27	1.52
15.88 ≦ t < 19.05	0.76	0.76	0.76	0.76	0.76	1.02	1.02	1.02	1.27	1.52
19.05 ≦ t < 25.40	0.76	0.76	0.76	0.76	1.02	1.02	1.27	1.27	1.52	1.78
25.40 ≦ t < 50.80	1.52	1.52	1.52	1.52	1.52	1.78	2.03	2.54	2.54	2.79
50.80 ≦ t < 76.20	2.29	2.29	2.29	2.54	2.54	2.79	3.05	3.30	3.56	3.81
76.20 ≦ t < 101.60	2.79	2.79	2.79	2.79	2.79	3.30	3.56	3.56	3.56	3.81
101.60 ≦ t < 125.0	3.81	3.81	3.81	3.81	3.81	3.81	3.81	3.81	3.81	5.08

Remarks: 1. The minus side tolerance on thickness shall be -0.25mm.

- 2. Thickness shall be measured at 9.53 to 19.05mm from the longitudinal edge.
- 3. For thickness measured at any location other than that specified in note 2, the permissible maximum over tolerance shall be increased by 75%.

7.2.5 ABS Thickness Tolerances of Steel Plates

unit: mm

Norminal Thickness(t)	Thickness Tolerance
6.00 ≦ t ≦ 75.00	According to ISO 7452 Class C rules

7.2.6 JIS G3193 Width Tolerances of Steel Plates

unit: mm

		Tolerance							
Width (w)	Thickness(t)	Mill	Edge	Cut Edge (By Ordinary Cutting)					
		Lower	Upper	Lower	Upper				
800 ≦ w < 1000	6.00 ≦ t < 20.0				10				
	20.0 ≦ t				15				
1000 ≦ w < 1250	6.00 ≦ t < 20.0								
1000 \(\geq \text{W} \left\) 1250	20.0 ≦ t	0	Not	0	15				
1250 < w / 1600	6.00 ≦ t < 20.0		specified	0	15				
1250 ≦ w < 1600	20.0 ≦ t								
1600 ≦ w	6.00 ≦ t < 20.0				1.2%				
1000 ≅ W	20.0 ≦ t				1.270				

7.2.7 JIS G3193 Length Tolerances of Steel Plates

unit: mm

	Toler	Tolerance						
Length(L)	Cut Edge(By Ordinary Cutting)							
	Lower	Upper						
3048 ≦ L < 4000	0	20						
4000 ≦ L < 6000	0	30						
6000 ≦ L < 8000	0	40						
8000 ≦ L < 10000	0	50						
10000 ≦ L < 15000	0	75						
15000 ≦ L ≦ 18000	0	100						

7.2.8 ASTM Length & Width Tolerances of Sheared Plates

unit: mm

Specif	Specified Dimensions		Upper Limit of Tolerance on Length & Width for Thickness (t)									
Longth (L)	Width (w)	t ≦ 9	9.53	9.53 < t	≦ 15.87	15.88 ≦	t ≦ 25.39	25.40 ≦	t ≦ 50.80			
Length(L)	vviatr (w)	Width	Length	Width	Length	Width	Length	Width	Length			
L < 3048	w < 1524 1524 ≤ w < 2133 2133 ≤ w < 2743 2743 ≤ w	9 11 13 16	13 16 19 22	11 13 16 19	16 17 22 25	13 16 19 22	19 22 25 28	16 19 25 28	25 25 28 32			
3048 ≦ L < 6096	w < 1524 1524 ≤ w<2133 2133 ≤ w<2743 2743 ≤ w	9 13 14 16	19 19 22 25	13 16 17 19	22 22 24 28	16 19 20 22	25 25 28 32	19 22 25 28	28 32 35 35			
6096 ≦ L < 9144	w < 1524 1524 ≤ w < 2133 2133 ≤ w < 2743 2743 ≤ w	9 13 14 17	25 25 25 28	13 16 17 22	28 28 28 32	16 19 22 25	32 32 35 35	19 22 25 32	38 38 38 44			
9144 ≦ L < 12192	w < 1524 1524 ≤ w < 2133 2133 ≤ w < 2743 2743 ≤ w	11 13 14 19	28 32 32 35	13 16 19 22	32 35 35 38	16 19 22 25	35 38 38 41	19 22 25 32	41 41 47 47			
12192 ≦ L < 15240	w < 1524 1524 ≤ w < 2133 2133 ≤ w < 2743 2743 ≤ w	11 13 16 19	32 35 35 38	13 16 19 22	38 38 38 41	16 19 22 25	41 41 41 44	19 22 25 32	47 47 47 47			
15240 ≦ L < 18288	w < 1524 1524 ≤ w < 2133 2133 ≤ w < 2743 2743 ≤ w	13 16 16 22	44 44 44 44	16 19 19 25	47 47 47 51	19 22 22 28	47 47 47 57	22 25 28 32	57 57 57 63			
18288 ≦ L	w < 1524 1524 ≦ w < 2133 2133 ≦ w < 2743 2743 ≦ w	14 19 19 25	51 51 51 51	19 22 22 28	54 54 54 60	22 25 25 32	57 57 57 63	25 28 32 35	70 70 70 76			

Remark: The lower limit tolerance on specified length and width is -6mm.

7.2.9 ASTM Width & Length Tolerances of Steel Plates(When Gas Cutting is Specified or Required) unit : mm

Specified Thickness (t)	Tolerance on Width and length (Applies to Carbon Steel)	Tolerance on Width and length (Applies to Alloy Steel)
t < 50.8	+ 13 0	+ 19 0
50.8 ≦ t < 101.6	+ 16 0	+ 25 0
101.6 ≦ t ≦ 125	+ 19 0	+ 28 0

7.2.10 JIS G3193 Maximum Flatness Tolerances of Steel Plates

unit: mm

Measured Length	2000 4000						
Width(w) Thickness (t)	800 ≦ w < 1250	1250 ≦ w < 1600	1600 ≦ w < 2000	2000 ≦ w	800 ≦ w < 2000	2000 ≦ w < 3000	3000 ≦ w
6.00 ≦ t < 8.00	13	13	13	21	22	28	_
8.00 ≦ t < 15.00	12	12	12	16	12	16	24
15.00 ≦ t < 25.00	12	12	12	16	12	16	22
25.00 ≦ t < 40.00	9	9	9	13	9	13	19
40.00 ≦ t < 80.00	8	8	8	11	8	11	16
80.00 ≦ t < 150	8	8	8	10	8	10	15
150 ≦ t < 250	10	10	10	15	10	15	20
250 ≦ t ≦ 350	20	20	20	20	20	20	20

Remarks: 1.The above table applies to 4m in length at any place of steel plate, and for steel plate less than 4m in length, to the full length.

- 2. For the steel plate whose minimum tensile strength is specified to be 570N/mm² and over, or whose minimum yield strength 430N/mm² and over, the maximum value of flatness specified in the above table shall be altered to one and half times the given values, unless otherwise specified.
- 3. This table shall not be applied to the as-rolled steel plate with untrimmed edge.
- 4. Measurement of flatness, as a rule, shall be made on a flat surface plate.

7.2.11 ASTM Maximum Flatness Tolerances of Steel Plates(Applies to Carbon Steel Only)

unit: mm

		Permitted Variations From a Flat Surface for Specified Width (w)									
Specified Thickness (t)	w < 914	914 ≦ w < 1219	1219 ≦ w < 1524	1524 ≦ w < 1829	1829 ≦ w < 2134	2134 ≦ w < 2438	2438 ≤ w < 2743	2743 ≦ w < 3048	3048 ≦ w < 3658	3658 ≦ w < 4267	4267 ≦ w
t < 6.35	14	19	24	32	35	38	41	44	47	_	_
6.35 ≦ t < 9.53	13	16	19	24	28	32	35	38	41	_	_
9.53 ≦ t < 12.70	13	14	16	16	19	22	25	28	32	47	54
12.70 ≦ t < 19.05	11	13	14	16	16	19	25	25	28	38	50
19.05 ≦ t < 25.40	11	13	14	16	16	16	19	22	25	35	44
25.40 ≦ t < 50.80	9	13	13	14	14	16	16	16	17	28	38
50.80 ≤ t < 101.60	8	9	11	13	13	13	13	14	16	22	28
101.60 ≦ t < 125.00	9	11	13	13	14	14	16	19	22	22	25

Remarks: 1. The above table applies to flatness variations for length and width.

- 2. The flatness variations across the width shall not exceed the tabular amount for the specified width.
- 3. The permissible variations in flatness along the length shall not exceed the tabular amount for the specified width in plates up to 3.6m in length, or in any 3.6m of longer plates.
- 4. When the longer dimension is under 914mm the permissible variation shall not exceed 6mm. When the longer dimension ranges from 914mm to 1829mm incl. the permissible variation shall not exceed 75% of the tabular amount for the specified width, but in no case less than 6mm
- 5. These variations apply to plates which have a specified min. tensile strength not more than 60ksi(414N/mm²). The limits in the table are increased 50% for plates specified to a higher min. tensile strength.

7.2.12 ASTM Maximum Flatness Tolerances of High-Strength Low-Alloy and Alloy Steel Plates

unit: mm

		Flatness Tolerances for Specified Widths(w)									
Specified Thickness(t)	w < 914	914 ≦ w < 1219	1219 ≦ w < 1524	1524 ≦ w < 1829	1829 ≦ w < 2134	2134 ≦ w < 2438	2438 ≦ w < 2743	2743 ≦ w < 3048	3048 ≦ w < 3658	3658 ≦ w < 4267	4267 ≦ w
t < 6.35	20	28	35	47	51	57	60	66	70	_	_
6.35 ≤ t < 9.53	19	24	28	35	44	47	51	57	60	_	_
9.53 ≦ t < 12.70	19	22	24	24	28	33	38	41	47	70	79
12.70 ≤ t < 19.05	16	19	20	22	25	28	32	35	41	57	76
19.05 ≦ t < 25.40	16	19	22	22	24	25	28	33	38	51	66
25.40 ≦ t < 50.80	14	16	19	20	22	24	25	25	25	41	57
50.80 ≦ t < 101.60	13	14	17	19	19	19	19	22	25	32	41
$101.60 \le t \le 125.00$	14	17	19	19	22	22	24	28	32	32	38

Remarks: 1. The above table applies to flatness variations for length and width.

- 2. The flatness variations across the width shall not exceed the tabular amount for the specified width.
- 3. The permissible variations in flatness along the length shall not exceed the tabular amount for the specified width in plates up to 3.6m in length, or in any 3.6m of longer plates.
- 4. When the longer dimension is under 914mm the variation shall not exceed 9.5mm. When the longer dimension ranges from 914mm to 1829mm incl. the variation shall not exceed 75% of the tabular amount for the specified width.

7.2.13 JIS , ASTM Lateral Warpage Tolerance of Steel Plates

unit: mm

Length (L)		ASTM			
Width(w)	2500 ≦ L < 4000	4000 ≦ L < 6300	6300 ≦ L < 10000	10000 ≦ L	Not Specified
630 ≦ w < 1000	6max.	10max.	16max.	16 max. for10000 of length at any place	
W ≧ 1000	5max.	8max.	12max.	12 max. for10000 of length at any place	
Not Specified					2×Length(m) max.

Remark: The above table applies to shear-cut and flame-cut plates.

 $\ \ 7.2.14 \ \mathsf{ASTM} \ \mathsf{Permissible} \ \mathsf{Variation} \ \mathsf{in} \ \mathsf{Waviness} \ \mathsf{Tolerances} \ \mathsf{for} \ \mathsf{Plates}$

unit: mm

Tolerances			ess Tolerances		Vaves/per 360	Omm)	GIIIC IIIIII
from 7.2.11 or 7.2.12	1	2	3	4	5	6	7
8	8	6	5	3	3	2	2
9	9	8	5	5	3	2	2
11	11	8	6	5	3	3	2
13	13	9	8	5	5	3	2
14	14	11	8	6	5	3	2
16	16	13	9	6	5	3	2
17	17	13	9	8	5	5	2
19	19	14	11	8	6	5	2
21	21	16	11	8	6	5	2
22	22	17	13	9	6	5	2
24	24	17	13	9	8	6	5
25	25	19	14	11	8	6	5
29	29	22	16	13	9	8	6
32	32	24	17	13	9	8	6
35	35	27	19	14	11	8	6
38	38	29	22	16	13	9	6
41	41	32	24	17	13	9	8
44	44	33	25	19	14	11	8
48	48	37	27	21	14	11	8
51	51	38	29	22	16	13	9
54	54	41	30	22	17	13	9
57	57	43	32	24	17	14	9
60	60	46	33	25	19	14	11
63	63	48	37	27	21	14	11
67	67	51	38	29	21	16	11
70	70	52	40	29	22	16	13
73	73	56	41	30	24	17	13
76	76	57	43	32	24	17	14
79	79	60	44	33	25	19	14

Remark: The waviness tolerance is a function of the flatness tolerance as obtained from 7.2.11 or 7.2.12.

(Unit: Thickness/Width:mm, Length:m)

Length Width	1524	1600	1701	1801	1901	2051	2201	2401	2601	2801	3001	3201	3401	3601	Width Length
Thickness	2	1700	1000	2	2050	3300	2400	3600	2000	3000	3300	3400	3600	3000	
6.00~6.99	1599	1700	1800	1900	2050	2200	2400	2600	2800	3000	3200	3400	3600 Nego	3800	6.00~6.99
7.00~7.99													rvego		7.00~7.99
8.00~8.99															8.00~8.99
9.00~9.99															9.00~9.99
10.00~11.99															10.00~11.99
12.00~13.99					N	/laximun	n length	for this a	rea: 18.5	5m					12.00~13.99
14.00~15.99															14.00~15.99
16.00~17.99															16.00~17.99
18.00~19.99															18.00~17.99
20.00~21.99															20.00~21.99
22.00~23.99														17.7	22.00~23.99
24.00~25.99												18.2	17.2	16.3	24.00~25.99
26.00~27.99											18.1	16.9	16.0	15.1	26.00~27.99
28.00~29.99										18.0	16.9	15.8	14.9	14.1	28.00~29.99
30.00~31.99									18.1	16.9	15.8	14.8	14.0	13.2	30.00~31.99
32.00~33.99								18.4	17.0	15.9	14.9	13.9	13.1	12.4	32.00~33.99
34.00~35.99								17.3	16.1	15.0	14.0	13.1	12.4	11.7	34.00~35.99
36.00~37.99							17.9	16.4	15.2	14.2	13.3	12.4	11.7	11.1	36.00~37.99
38.00~39.99							16.8	15.6	14.4	13.5	12.6	11.8	11.1	10.5	38.00~39.99
40.00~41.99				18.3	1	17.7	16.0	14.8	13.7	12.8	12.0	11.2	10.6	10.0	40.00~41.99
42.00~43.99		18.1	18.4		18.1	16.9	15.2		13.1	12.2		10.7		9.5	42.00~43.99
	10 /			17.4				14.1			11.4		10.1		
44.00~45.99	18.4	17.3	17.6	17.6	17.3	16.1	14.6	13.5	12.5	11.7	10.9	10.2	9.6	9.1	44.00~45.99
46.00~47.99	17.7	16.6	16.9	16.9	16.6	15.4	13.9	13.0	12.0	11.2	10.5	9.8	9.2	8.7	46.00~47.99
48.00~50.80	16.3	15.9	16.2	16.2	15.9	14.8	12.9	12.4	11.5	10.7	10.0	9.4	8.5	8.4	48.00~50.80
50.81~51.99		15.3	15.6	15.6	15.3			11.9	11.0	10.3	9.6	9.0		8.0	50.81~51.99
52.00~53.99	15.7	14.7	15.0	15.0	14.7	13.7	12.4	11.5	10.6	9.9	9.3	8.7	8.2	7.7	52.00~53.99
54.00~55.99	15.1	14.2	14.4	13.4	14.2	13.2	11.9	11.1	10.3	9.6	8.9	8.3	7.9	7.4	54.00~55.99
56.00~57.99	14.6	13.7	13.9	12.9			11.5	10.7	9.9			8.1	7.6	7.2	56.00~57.99
58.00~59.99 60.00~61.99	14.1	13.2	13.5	12.5	13.2	12.3	11.1	10.3	9.6	8.9	8.3	7.8	7.3	6.9	58.00~59.99
	13.6	12.8	13.0	12.1	12.8	11.9	10.7	10.0		8.6	7.8	7.5	7.1	6.7	60.00~61.99
62.00~63.99	13.2	12.4	12.6	11.7	12.4	11.5	10.4	9.7	8.9	8.3	7.6	7.3	6.9	6.5	64.00~65.99
66.00~67.99	12.7	11.6	11.8	11.0	11.6	10.8	9.8	9.1	8.4	7.8	7.3	6.8	6.4	6.1	66.00~67.99
68.00~69.99	12.0	11.3	11.5	10.7	11.3	10.5	9.5	8.8	8.2	7.6	7.3	6.6	6.3	5.9	68.00~69.99
70.00~71.99															
72.00~73.99	11.6	10.9	11.2	10.4	10.9	9.9	9.2	8.6	7.9	7.4	6.9	6.4	6.1 5.9	5.7	70.00~71.99 72.00~73.99
74.00~75.99	11.0	10.4	10.9	9.8	10.4	9.7	8.7	8.1	7.7	7.2	6.5	6.1	5.7	5.4	74.00~75.99
76.00~77.99	10.7	10.4	10.3	9.6	10.4	9.4	8.5	7.9	7.3	6.8	6.4	5.9	5.6	5.3	76.00~77.99
78.00~79.99	10.7	9.8	10.0	9.3	9.8	9.2	8.3	7.7	7.1	6.6	6.2	5.8	5.4	5.1	78.00~79.99
80.00~81.99	10.4	9.6	9.8	9.1	9.6	8.9	8.1	7.7	6.9	6.5	6.0	5.6	5.3	5.0	
82.00~83.99	9.9	9.3	9.5	8.9	9.4	8.7	7.9	7.3	6.8	6.3	5.9	5.5	5.2	4.9	80.00~81.99 82.00~83.99
84.00~85.00	9.8	9.2	9.4	8.8		8.6	7.8		6.7			5.4		4.8	
					9.2			7.2		6.2	5.8		5.1 4.8	4.6	84.00~85.00
85.01~90.00	9.3	8.7	8.9	8.3	8.7	8.1	7.3	6.8	6.3	5.9	5.5	5.1		4.0	85.01~90.00
90.01~95.00 95.01~100.00	8.8	7.8	8.4	7.8	7.8	7.7	6.9	6.4	6.0	5.5	5.2 4.9	4.8	4.6		90.01~95.00
			8.0					6.1	5.6			4.6	l		95.01~100.00
100.01~105.00	7.9	7.4	7.6	7.0	7.4	6.9	6.3	5.8	5.4	5.0	4.7				100.01~105.00
105.01~110.00	7.5	7.1	7.2	6.7	7.1	6.6	6.0	5.5	5.1	4.8					105.01~110.00
115.01~115.00	7.2	6.8	6.9	6.4	6.8	6.3	5.7	5.3	4.9						110.01~115.00
115.01~120.00	6.9	6.5	6.6	6.1	6.5	6.0	5.5	5.1	4.7						115.01~120.00
120.01~125.00	6.6 1524	6.2 1600	6.3 1701	5.9 1801	6.2 1901	5.8	5.2	4.8	4.5 2601	2801	3001	3201	3401	3601	120.01~125.00 Thickness
Thickness	1324	2	2	2	2	2031	2201	2401	2001	2001	2	2	2	2	
Length Width		1700	1800	1900			2400	2600					3600	3800	Width Length

(1) Plate for general use

	Instruction	on		Position
		1	Pattern and Mark	
		2	CSC Name	
	JGA JQTW07007	3	Date	
Stencil for	CHINA STEEL MFG-DATE: SEP.05,2008	4	Customer Name	
painting	CHUN YUAN JIS G3101 SS400	5	Spec./Grade	Rolling Direction
	60.00x2499x6096mm DP5477Y001 21996A	6	Dimensions	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	DI STITTONI EISSVII	7	Order No/Plate No.	
				E 20 174 1777
	П	8	Trade Mark	O STATE SEPO (2008) O STATE S
Die	נ{}ם	9	Heat No./Slab ID	D Jacobio Seaso O Differential Seaso O Differential Seaso O Seaso O Differential Seaso O Diff
Stamp	3A136-302-3 SS400	10	Grade	Above 30.5cm
	35400			

(2) Plate for pressure vessel

	Instruction	Instruction				
		1	Customer Name			
		2	Spec./Grade	Above 30.5cm		
Stencil	YUNG KUANG HUA ASTM A285 GR.C	3	Dimensions	Low Strong Die Stamp		
for painting (Two) 10.00x2438x9144mm QT3105A001 94778A		4	Heat No./Slab ID	Tass are Low Stress Die Staffip		
	Q13103A001 94776A			Above Above		
Sites)				AF		
				E		
				VING KUANG HUA ASTIM AZIS GR C 10.000238369144mm		
Low	_п_	5	Trade Mark	Stencil for Painting		
Low Stress Die Stamp	[S]	6	Heat No./Slab ID	Low Stress Die Stamp		
	IT883-201-1 A285 GRC	7	Grade	Above 30.5cm		
	11203 GRC					

10.1 Orientation Feature

Plate products are produced from slabs through rolling process. In general, the properties of plate on rolling direction (longitudinal) are better than those on transverse direction. In addition, the applications, which stress is applied on thickness direction and the effect of middle thickness position of plate due to the center segregation of slabs, shall be considered. The properties on thickness direction shall be also asked to announce and verify if necessary.

10.2 Post-Processes and Quality Requirements

The ways of processing for plate products are mostly often seen in cutting, bending and welding, among which welding is specially the most major way of processing since almost all applications of steel plates need to have the post-process for welding. The use of steel plates, in addition to the requirements for specification tolerance and surface quality, the inner quality for satisfying various uses needs to have the corresponding quality properties, such as strength, toughness, corrosion resistance, weldability etc. Therefore, it should plan carefully in the early stage of material design according to the end-uses and consider the subsequent corresponding processes to avoid unexpected failures.

10.3 The Influences of Cutting

Since shear-cutting produces some unfavorable features such as micro cracks, burrs and hardened layer on the cutting surface, it is easy to result in the end-surface cracks that are detrimental to following processes. The effective methods to prevent the occurring of end-surface cracks are removing of burrs, making of rounded corners or heat annealing.

Flame-cutting will harden the cutting surface by the quenching effect which is positively correlative to the carbon equivalent. Mild heating to the cutting region before and after flame-cutting is helpful to the subsequent processes.

10.4 Weldability

Welding area includes fusion zone (i.e. the weld metal) and heat affected zone (HAZ). The fusion zone forms casting texture while the HAZ turns to a hardened area after welding. Due to quenching effect, HAZ is characterized by its low elongation and could be a crack source during welding or using. Hence, the material properties and welding conditions have to be confirmed so that the highest hardness in heat affected zone can be possibly reduced. Since the highest hardness is generally a direct proportion with the carbon content, the hardened area alloy additions (as carbon equivalent) can be considered and adjusted from the early stage of material design in order to improve the weldability and reduce the detrimental effects of HAZ.

The carbon equivalent can be estimated by following equation:

Ceq(%) = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15

Steel grades that contains Ni, Cr, Mo, Cu, V and Nb in the composition need to be treated carefully during welding because the material is easy to form a HAZ with very hard textures and result in such problems as low elongation and low-temperature cracks.

Low-temperature crack happens after a period of time from the welding, including underbead crack, root crack and toe crack, etc. The causes of low-temperature crack include the elongation of HAZ, the diffusion of hydrogen in weld metal, and the restraint and hardenability of material.

PCM, the low-temperature crack sensitivity, is a quantitative index to monitor the correlation between chemical composition and low-temperature crack occurrence, which can be calculated as below:

PCM (%) = C+ Si/30+ Mn/20+ Cu/20+ Ni/60+ Cr/20+ Mo/15+ V/10+ 5B

The lower PCM value, the lower risk of crack of materials is. It may reduce preheating temperature when doing the welding. PCM is a very important property to the steel maker developing high strength steels, and it have to be properly handled for the production of steels with excellent weldability and crack resistance.

10.5 Bendability

The bending radius applied on a steel plate shall not be smaller than the minimum value given by specification. The degree of minimum bending radius depends on the thickness and materials of steel plates. The smaller minimum bending radius, the better bendability of steel plates is. As for the influences of thickness of steel plates, the thicker, the more difficult processing is, and the larger minimum bending radius becomes, too.

Because the effect of rolling steel plates with longitudinal direction for bending work is better than that with the transverse direction, when the bending direction is toward parallel direction of rolling, the materials can bear more strains. In reverse, it is easy to crack if the bending direction is vertical direction of rolling. These factors should be regarded at sampling and planning stage for preventing bending work from cracks. Furthermore, burrs of cutting surface are supposed to be in the inner radius of bending since they are crack inducers under tension stress.

10.6 Ultrasonic Test

- (1) Since CSC uses continuous casting slabs to roll steel plates, the maximum thickness of slabs is 270 mm. The maximum thickness of plate would be extended as possible to meet requirements of customers. And for the rolling ratio and safty considerations, customers should consider doing the UT examination.
- (2) Adoptable ultrasonic test standards are listed as follows:
 - (a) ASTM A435 and A578: The ultrasonic tests that focus on inner layer type defect detection. Test and acceptance criteria of A578 are divided into 3 levels of A, B and C. Level A is the same with A435 that single defective spot shall not be larger than 3 inch or the circle area of the diameter of 1/2 thickness. Level B is altered from level A that nearby small defects will be involved into the calculation of defect size. Level C is the strictest that the acceptable single maximum defect size shall not be larger than 1 inch.
 - (b) JIS G0801 and G0901: G0801 is designed for pressure vessels and is divided into 3 types of SG \ AC \ AL and class X \ Y. G0901 is designed for building structures and is divided into 2 types of X and Y. Both standards focus on the detection of inner layers and defect spots that the criteria of G0801 are stricter than that of G0901.

	ft	inch	mm	m	
Longth	1	12	304.8	0.3048	
Length -	0.08333	1	25.4	0.0254	
	0.003281	0.03937	1	0.001	

Mass 1kg = 2.20462 lb	
-----------------------	--

Force	1kgf = 9.80665 N
-------	------------------

	ksi(=1000psi)	psi	kgf/mm²	N/mm²(=MPa)	
	1	1000	0.70307	6.89476	
Stress	0.001	1	7.0307×10 ⁻⁴	6.89476×10 ⁻³	
	1.42233	1422.33	1	9.80665	
	0.145038	145.038	0.101972	1	

	ft-lbf	kgf-m	N-m(= joule)
Absorbed	1	0.138255	1.35582
Energy	7.23301	1	9.80665
	0.737562	0.101972	1

Required Ordering Data		Example
1	Specification	ASTM/ASME/JIS
2	Designation Grade and Year of Issue	A36/SA36/SS400
3	Order Size(Thickness × Width × Length)	6.00~125mm×1524mm×3048mm
4	Order Piece	7 pieces
5	Chemical Composition	Specification/Cust. Spec./Mill Range
6	Application	General Purpose
7	Edge Status	Mill Edge or Cut Edge
8	Delivery Condition	As-Rolled/Normalized/Control Rolled
9	Special Requirements(If required)	Ultrasonic Test (A435/A578/G0801/G0901)
		Impact Test (Temp./Direction/Absorption Energy)
		Simulated Post Welding Heat Treatment (Hold Temp./Time/Heating or Cooling Rate)

^{1.}The contents of this catalog are for reference only. Customers are urged to consult the specifications published by the corresponding Associations.

Phone number are listed below for your convenience. Numbers of our international Offices are shown on the back cover.

1.Sales services

CHINA STEEL GLOBAL TRADING CORPORATION

Address: 10F, NO.88, Cheng gong 2nd Rd, Qian zhen, Kaohsiung 80661 TAIWAN Tel: 886-7-3322168 | Fax: 886-7-3356411 | E-mail: c00681@mail.csc.com.tw

CSGT JAPAN CO., LTD.

CSGT HONG KONG LIMITED

Address: ROOM 1407,14/F, WORLD WIDE HOUSE, 19 DES VOEUX ROAD, CENTRAL, HONG KONG

CSGT (SHANGHAI) CO.,LTD.

Address: 21F, NO.1468 NAN JING WEST RD., SHANGHAI 200040

CSGT (SINGAPORE) PTE, LTD.

| Address: #14-01, MAS BUILDING, 10 SHENTON WAY SINGAPORE 079117 | Tel: 65-62238777~8 | Fax: 65-62256054 | E-mail: changcc@csgtsg.com.sg

2. Metallurgical Department

Technical Service Section-Metallurgy: 886-7-8021335

Metallurgical Specification and Testing Section: 886-7-8021111 Ext. 3261

^{2.}Information on the available steel grades, size, marking and packing as shown herein may be updated without notice to comply with actual production situations.

^{3.}We invite you to contact our Head Office should you have any questions concerning steel specifications or ordering requirements.

Head Office

- Address: #1, Chung Kang Rd., Hsiao Kang, Kaohsiung 81233, Taiwan, Republic of China
- Tel: 886-7-802-1111
- Fax: 886-7-802-2511, 801-9427
- Web: http://www.csc.com.tw

China Steel Building (Group Headquarters)

- Address: #88, Chenggong 2nd Rd., Qianzhen, Kaohsiung 80661, Taiwan, Republic of China
- Tel: 886-7-337-1111
- Fax: 886-7-537-3570

Taipei Liaison Office

- Address: Room A, 28F, #7, Sec.5, Xinyi Rd., Xinyi, Taipei 11049, Taiwan, Republic of China
- Tel: 886-2-8758-0000
- Fax: 886-2-8758-0007

Osaka Office

- Address: 1F, Osaka U2 Bldg., 4-7Uchihonmachi 2-Chome, Chuoku, Osaka 540-0026, Japan.
- Tel: 81-6-6910-0888
- Fax: 81-6-6910-0887

Singapore Office

- Address: #14-01 Mas Building, 10 Shenton Way, Singapore 079117
- Tel: 65-6223-8777-8
- Fax: 65-62256054

(Manual download)

CAT.NO.3-PL-01-2014-E1