
Zn-Coated Steel

The quality policy of China Steel Corporation China Steel Corporation, based-on customer orientation, will incessantly innovate, research & develop to provide excellent and eco-friendly products, and consequently fulfill our responsibility to society. China Steel Building (Group Headquarters)

CHINASTEEL

China Steel Corporation (CSC), located at Kaohsiung, Taiwan was founded in December 1971. With annual capacity (in terms of crude steel) around 10 million tonnes, CSC produces a range of products that includes plates, bars, wire rods, hot and cold rolled coils, electrogalvanized coils, electrical steel coils, hot-dip galvanized coils, and Ti/ Ni-base alloy. The domestic market takes roughly 65% of CSC's production and the exports take the remaining 35%. CSC is the largest steel company in Taiwan, enjoying more than 50% of the domestic market. Major export destinations are Mainland China, Japan and Southeast Asia.

CSC is very active in innovation, and has strong capability to put the innovations into practice. The company's vision is: "We aspire to be a trustworthy steel company of global distinction that pursues growth, environmental protection, energy saving and value-innovation". CSC actively puts into practice its corporate values of "teamwork, entrepreneurial approach, down-to-earthiness and pursuit of innovation", as well as its operations beliefs of " promotion of social well-being, result orientation, implementation of teamwork, and emphasis on employees' self-realization." CSC keeps deepening the roots for its core business in steel, and devoted to integrate the related downstream industries to foster healthy development and international competitiveness of Taiwan's steel related industry.

Plant Greening

China Steel Corporation (CSC) is an integrated steel producer. After its phase II expansion construction was completed on June 30, 1982, CSC launched its production of Cold Rolling Mill. Subsequently, CSC went through to complete its phases III and IV expansion constructions. Products include cold-rolled coils, electrical steel coils, electro-galvanized coils, hot-dip galvanized coils and color coils. This manual introduces Zn-coated steel (cold rolled base) products only.

Through unceasing developments and improvements over the years, CSC's Zn-coated steel products have been gradually diversified. They are available for various processing uses and have been sufficient to meet the requirements of industries, such as hot-dip galvanized steels with general formability, high-strength-improved formability and high strength dual-phase, high conductivity anti-finger printed electrolytic zinc-coated steel coils, galvanized products with one-side coating and oiling, etc.

Through the integrated quality management of iron making, steelmaking and steel rolling to the release and shipping of finished products, CSC's Zncoated steel products are excellent in their inner and outer quality, dimensional accuracy and processing properties. Zn-coated coils have ultra smooth surface which can be directly used in exposedness, as well as have excellent adhesion and corrosion resistance of galvanized layers owing to the adoption of two-stage degreasing equipment and full radiant tube heating mode, and close monitor of furnace atmosphere for stably controlling the galvanized quantities. Moreover, CSC provides customers with organic or inorganic post-treatment films completely complied with non-toxic matter, which are products with mixed good corrosionresistance, lubrication, weldability and paintability.

CSC's Zn-coated steel products have been approved by certifications such as ISO 9001, ISO/TS16949, JIS MARK and IECQ QC080000 (Hazardous Substance Process Management), etc. They meet the regulations of RoHS (Restriction of Hazardous Substances Directive) and REACH (Registration, Evaluation, Authorisation and Restriction of Chemical substances), and are verified through certification of high-strength grades by the well-known carmakers. The approvals and qualifications are testament to CSC's commitment to reliable and superior products, thus providing its customers a peace of mind.

The vision of CSC's customer services is to gain customers' appreciation and trust and help them be successful, and the aim of that is to promote customers' technology and upgrade the steel industry. In order to enhance the customer services, CSC adopts multi-step and multi-level service pattern which is characterized by emphasizing on (1) the pre-sale services for helping customers to choose suitable materials and improve their production processes; (2) handling complains and claims from customers with proper and rapid manner, and conducting customers the corresponding improvements to the root-causes; (3) providing customers with the developed high-grade materials to meet the upgrade policy for domestic industries.

The stable and reliable quality of CSC's steel products have gained the acceptance of domestic industries widely, and CSC has also been selected as the first priority provider to purchase their needed steel materials owing to CSC's quick and efficient technical services. CSC will continue to improve customer services and the technical technologies both for customers and CSC itself to promote steel-use industries' international competitiveness.

High Conductive AFP (Anti-Finger Print) Galvanized Steel (EG/CG)

Product with excellent conductivity, it is applicable for computer case, electrical appliances, or other 3C industries' components. Suitable for anti-EMI(Electromagnetic Interference) and anti-electrostatic requirements of the circumstances.

GA Lubricating Coated Steel

Automotive steel with high lubricity coating film with chemical treatment, it can significantly improve the formability, prolong the mould's life, and avoid stamping rupture.

High Strength Galvannealed Steel (EN HX260YD/ HX300YD \ JFS JAC390P)

High strength and good stamping formability, suitable for automotive metal and components which demand high formability purposes.

High-Strength Low Alloy Galvanized/Galvannealed Steel (EN HX380LAD / HX420LAD/ HX460LAD \ JFS JAC590R)

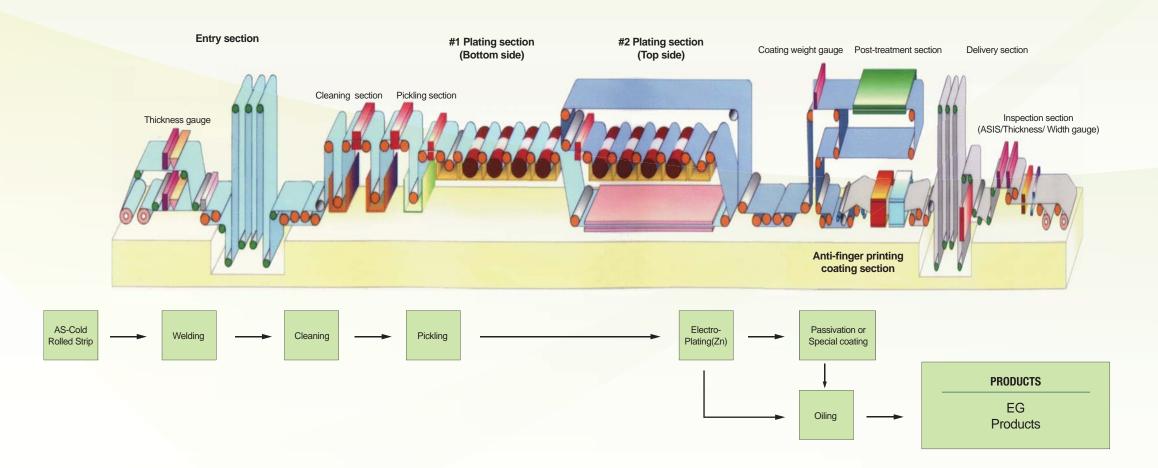
High strength and low carbon equivalent. Those steel grades will be suitable for use in automotive structures and components, and meet the demand for light-weight purposes.

High-Strength Dual Phase Galvanized/Galvannealed Steel(EN HCT780X / HCT980X \ JFS JAC780Y/JAC980Y)

This dual phase steel contains mainly ferrite and partly martensite, with very high strength and low carbon equivalent welding characteristics. Those steel grades will be suitable for use in automotive structures and components, and meet the demand for light-weight body and high security applications.

Single-sided Electro-Galvanized Oiled Products

It will be developed for the locomotive fuel tank production. The single-sided galvanized surface located inside the tank has good corrosion resistance, while the other cold-rolled side has excellent appearance and weldability. It enhances the efficiency and quality, and prevents alloying between welding head and zinc coating which could lead to lower welding strength and life of welding head.



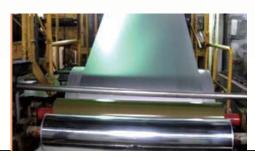
ISO/TS 16949 Certificate

Manufacturing Processes of Electroplated Galvanizing Line(EGL)

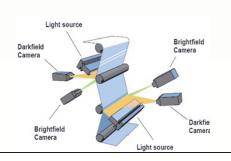
CAROSEL Conductor Roll

Anode
Radial
One
Side
Electroplating

<u>L</u>ine


Consumable

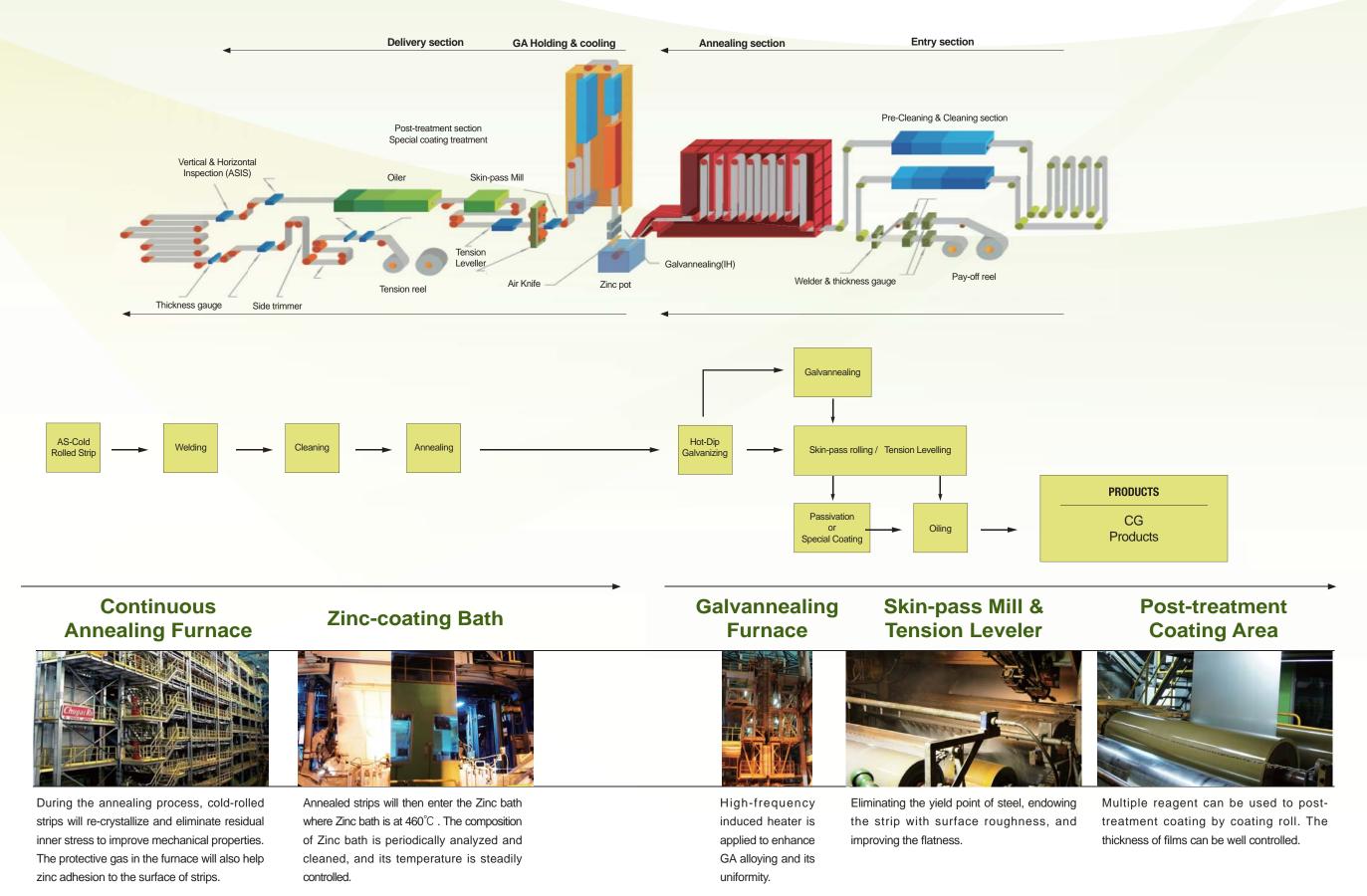
Electroplating with CAROSEL


CSC is using UEC's patent: CAROSEL. Zinc is coated layer-by-layer and uniformly through electrochemical reactions. The unique feature of CAROSEL is to use 4 individual tanks (for each side of strip), thus single-sided electroplated galvanizing coils are applicable.

Coating Area

Multiple reagent can be used to posttreatment coating by coating roll. The thickness of films can be well controlled.

ASIS (EGL/CGL)


(Automated Surface Inspection System)

The advantages of ASIS are as follows:

- (1) Overall consecutive automatic inspection \rightarrow Significantly enhance the inspection
- (2) Real-time quality feedback → Instant defect mending
- (3) Traceable and statistical data → Convenient for further investigate.

7

Manufacturing Processes of Continuous Hot Dip Galvanizing Line (CGL)

Automobile

TV back plate

Ceiling suspension frame and Steel frame

Kitchenware and Home Appliance

Color sheet(Siding and roofing)

Color sheet (Roof)

Furniture

Slide

Antenna

7.1Chemical Compositions and Mechanical Properties

7.1.1 Hot-Dip Galvanized Steel

(1)JIS G3302

Chemical cor	nposition
--------------	-----------

		Chemical composition		Unit: wt %
Symbol of grade	С	Mn	Р	S
SGCC	0.15max.	0.80max.	0.05max.	0.05max.
SGCD1	0.12max.	0.60max.	0.04max.	0.04max.
SGCD2	0.10max.	0.45max.	0.03max.	0.03max.
SGCD3	0.08max.	0.45max.	0.03max.	0.03max.
SGCD4	0.06max.	0.45max.	0.03max.	0.03max.
SGC340	0.25max.	1.70max.	0.20max.	0.05max.
SGC400	0.25max.	1.70max.	0.20max.	0.05max.
SGC440	0.25max.	2.00max.	0.20max.	0.05max.
SGC490	0.30max.	2.00max.	0.20max.	0.05max.

Bend test conditions

		Internal spacing of bend(number of sheets of nominal thickness)									
		Nominal thickness(t) mm									
Symbol		t < 1.6		1	.6 ≤ t < 3.	.0		3.0 ≦ t			
of grade	Coati	ng mass sy	ymbol	Coati	ng mass sy	/mbol	Coati	ng mass sy	/mbol		
	Z06 to Z27				Z35 Z37	Z45 Z60	Z06 to Z27	Z35 Z37	Z45 Z60		
SGCC	1	1	2	1	2	2	2	2	2		
SGCD1	1	_	_	1	_	_					
SGCD2											
SGCD3	(Flat on itself)			(Flat on itself)		_		_	_		
SGCD4											
SGC340	1	1	2	1	1	2	2	2	3		
SGC400	2	2	2	2	2	2	3	3	3		
SGC440	3	3	3	3	3	3	3	3	3		
SGC490	3	3		3	3	3	3	3	3		

NOTE: 1. The bending angle shall be 180° for any grade of steel.

^{2.} The test piece shall be JIS No.3, and one shall be taken from the sample in rolling direction.

Tension test characteristics

Symbol	Yield point or proof	Tensile strength		N	Elongat		m		Test piece and direction of
of grade	stress N/mm²	N/mm²	0.25 ≦ t < 0.40	0.40 ≦ t < 0.60	0.60 ≦ t < 1.0	1.0 ≦ t < 1.6	1.6 ≦ t < 2.5	2.5 ≦ t	tension test
SGCC	(205min.)	(270min.)	_	_	_	_	_	_	
SGCD1	_	270min.	_	34min.	36min.	37min.	38min.	_	JIS No.5
SGCD2	_	270min.	_	36min.	38min.	39min.	40min.	_	in rolling
SGCD3	_	270min.	_	38min.	40min.	41min.	42min.	_	direction
SGCD4 ^(*)	_	270min.	_	40min.	42min.	43min.	44min.	_	
SGC340	245min.	340min.	20min.	20min.	20min.	20min.	20min.	20min.	JIS No.5
SGC400	295min.	400min.	18min.	18min.	18min.	18min.	18min.	18min.	in rolling direction or
SGC440	335min.	440min.	18min.	18min.	18min.	18min.	18min.	18min.	perpendicular to the rolling
SGC490	365min.	490min.	16min.	16min.	16min.	16min.	16min.	16min.	direction

NOTE: 1. (*) For the sheet and coil of SGCD4, the stretcher strain shall not be generated when working is performed during 6 months after manufacturing.

- 2. Values in parentheses are shown for reference.
- 3. 1N/mm²=1MPa.

(2) ASTM A653 Chemical composition table

Unit: wt%

Symbol of grade	С	Mn	Р	S	Al	Cu	Ni	Cr	Мо	V	Nb	Ti ⁽¹⁾
CS Type A ^{2,3,4}	0.10 max.	0.60 max.	0.030 max.	0.035 max.	_	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
CS Type B ^{2,5}	0.02 ~0.15	0.60 max.	0.030 max.	0.035 max.	_	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
CS Type C ^{2,3,4}	0.08 max.	0.60 max.	0.100 max.	0.035 max.		0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
FS Type A ^{2,6}	0.10 max.	0.50 max.	0.020 max.	0.035 max.	_	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
FS Type B ^{2,5}	0.02 ~0.10	0.50 max.	0.020 max.	0.030 max.	_	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
DDS Type A ^{3,4}	0.06 max.	0.50 max.	0.020 max.	0.025 max.	0.01 min.	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.008 max.	0.008 max.	0.025 max.
DDS Type C ⁷	0.02 max.	0.50 max.	0.020 ~0.100	0.025 max.	0.01 min.	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.10 max.	0.10 max.	0.15 max.
EDDS ⁷	0.02 max.	0.40 max.	0.020 max.	0.020 max.	0.01 min.	0.25 max.	0.20 max.	0.15 max.	0.06 max.	0.10 max.	0.10 max.	0.15 max.

 $NOTE \div 1. \quad \text{For steels containing 0.02\% carbon or more, titanium is permitted at the producer's option, to the lesser of 3.4N+1.5S or 0.0025\%.}$

- 2. When deoxidized steel is required for the application, the purchaser has the option to order CS and FS to a min. of 0.01% total aluminum.
- 3. Steel is permitted to be finished as a vacuum degassed or chemically stabilized steel or both, at the producer's option.
- 4. For carbon levels less than or equal to 0.02%, vanadium, columbium or combinations thereof are permitted to be used as stabilizing elements at the producer's option. In such case, the applicable limit for vanadium and columbium shall be 0.10% max and the limit for titanium shall be 0.15% max.
- 5. For CS and FS, specify Type B to avoid carbon levels below 0.02%.
- 6. Shall not be furnished as stabilized steel.
- 7. Shall be furnished as stabilized steel.

(3) EN 10346 Low Carbon Steel for Cold Forming

Chemical composition and mechanical properties

Symbol of grade	С	Si	Mn max.	P (wt%)	S	Ti	strength strength Dioligation		Elongation ⁽¹⁾ min.(%)	Plastic strain ratio min.	Strain hardening exponent min.
DX51D	0.18		1.20	0.12			_	270~500	22	_	_
DX52D							140~300	270~420	26	_	_
DX53D		0.50			0.045		140~260	270~380	30	_	_
DX54D	0.12	0.50	0.60	0.10	0.045	0.30	120~220		36	1.6(2)	0.18
DX56D							120~180	260~350	39	1.9(2)(3)	0.21(2)(3)
DX57D							120~170		41	2.1(2)(3)	0.22(2)(3)

NOTE : 1. Decrease min. elongation values apply for product thickness $t \le 0.5$ mm (minus 4 units) and 0.5mm $< t \le 0.7$ mm (minus 2 units).

- $2. \ For \ GA \ products, \ r_{90}\ value \ reduced \ by \ 0.2 \ apply, \ and \ the \ min. \ n_{90}\ value \ reduced \ by \ 0.01 \ apply, \ and \ for \ t > 1.5 mm, \ the \ min. \ r_{90}\ value \ reduced \ by \ 0.2 \ apply.$
- 3. For t \leq 0.70mm, the min. r_{90} -value reduced by 0.2 apples and the min. n_{90} -value reduced by 0.01 apply.
- 4. The value of the tension test apply for transverse pieces.

(4) EN 10346 High Strength Steel for Cold Forming

Chemical composition and mechanical properties

Symbol	С	Si	Mn	Р	S	Ti	Nb	T.AI	Yield	Tensile	(1)(2)	Baked	Plastic	Strain
of grade			ma	ax. (wt%	%)			wt%	strength strength Elongation		Elongation ⁽¹⁾⁽³⁾ min.(%)	hardening Index min. (MPa)	strain ratio ⁽²⁾⁽³⁾ min	hardening exponent min.
HX180YD	0.01	0.20	0.70	0.06	0.025	0.12	0.09	≦ 0.1	180 ~240	330 ~390	34	_	1.7	0.18
HX220YD	0.01	0.20	0.90	0.08	0.025	0.12	0.09	≦ 0.1	220 ~280	340 ~420	32	_	1.5	0.17
HX260YD	0.01	0.25	1.30	0.10	0.025	0.12	0.09	≦ 0.1	260 ~320	380 ~440	30	_	1.4	0.16
HX300YD	0.015	0.30	1.60	0.10	0.025	0.12	0.09	≦ 0.1	300 ~360	390 ~470	27	_	1.3	0.15
HX180BD	0.10	0.50	0.70	0.06	0.025	0.12	0.09	≦ 0.1	180 ~240	290 ~360	34	35	1.5	0.16
HX220BD	0.10	0.50	0.70	0.08	0.025	0.12	0.09	≦ 0.1	220 ~280	320 ~400	32	35	1.2	0.15
HX260BD	0.10	0.50	0.80	0.10	0.025	0.12	0.09	≦ 0.1	260 ~320	360 ~440	28	35	_	_
HX300BD	0.11	0.50	0.80	0.12	0.025	0.12	0.09	≦ 0.1	300 ~360	400 ~480	26	35	_	_
HX260LAD	0.11	0.50	0.60	0.03	0.025	0.12	0.09	≧ 0.015	260 ~330	350 ~430	26	_	_	_
HX300LAD	0.11	0.50	1.00	0.03	0.025	0.15	0.09	≦ 0.1	300 ~380	380 ~480	23	_	_	_
HX340LAD	0.11	0.50	1.00	0.03	0.025	0.15	0.09	≧ 0.015	340 ~420	410 ~510	21		_	_
HX380LAD	0.11	0.50	1.40	0.03	0.025	0.15	0.09	≧ 0.015	380 ~480	440 ~560	19		_	_
HX420LAD	0.11	0.50	1.40	0.03	0.025	0.15	0.09	≧ 0.015	420 ~520	470 ~590	17	_	_	_

NOTE : 1. Decrease min. elongation values apply for product thickness $t \le 0.5$ mm (minus 4 units) and for 0.5mm $< t \le 0.7$ mm (minus 2 units).

- 2. For t > 1.5mm, the min. r_{90} -value reduced by 0.2 apply.
- 3. For GA products, elongation value could minus 2 units, $r_{\text{90}}\text{-}\text{value}$ reduced by 0.2 apply.
- 4. The value of the tension test apply for transverse pieces.

7.1.2 Electrolytic Galvanized Steel

(1) JIS G3313

Tension test characteristics

	Yield point	T9-		Elonga	ition %		
Symbol	or proof	Tensile strength		Nominal thic	kness(t)mm		Test piece
of grade	stress N/mm²	N/mm ²	0.40 ≦ t < 0.60	0.60 ≦ t < 1.0	1.0 ≦ t < 1.6	1.6 ≦ t < 2.5	and direction
SECC	_	_	_	_	_	_	
SECCT ⁽¹⁾	_	270min.	34min.	36min.	37min.	38min.	
SECD	_	270min.	36min.	38min.	39min.	40min.	JIS No.5
SECE	_	270min.	38min.	40min.	4 1min.	42min.	rolling direction ⁽³⁾
SECF ⁽²⁾	_	270min.	40min.	42min.	43min.	44min.	
SECG ⁽²⁾	_	270min.	42min.	44min.	45min.	46min.	

NOTE: 1. Applied to SECC when the purchaser has designated a tension test for it.

- 2. Sheet and coil of SECF and SECG shall be free from stretcher strain occuring during working for 6 months following the manufacture.
- 3. Where sampling of No.5 test piece is impracticable, shape and elongation of test piece shall be as agreed between the purchaser and the manufacturer.

Bend test conditions

Symbol of grade	Bend angle	Internal spacing of bend	Test piece and direction
SECC			
SECD			
SECE	180°	O(Flat on itself)	JIS No.3 rolling direction
SECF			
SECG			

NOTE: Internal spacing of bend is the multiple of the test piece nominal thickness.

(2)CSC Electrolytic Galvanized Steel

Tension test characteristics

	Yield point			Elonga	ation %						
Symbol	or proof	Tensile strength		Nominal thickness(t)mm							
of grade	stress N/mm²	N/mm²	0.40 ≦ t < 0.60	0.60 ≦ t < 1.0	1.0 ≦ t < 1.6	1.6 ≦ t < 2.5	and direction				
SECC1											
SECC2					_						
SECD	_	270min.	36min.	38min.	39min.	40min.	JIS No.5 rolling direction				
SECE		270min.	38min.	40min.	41min. 42min.						
SECF	_	270min.	40min.	42min.	43min.	44min.					

7.1.3 Coating mass, Chemical treatment, Spangle and Oiling

7.1.3.1 Hot-Dip Galvanized Steel

(1)JIS G3302

Equivalent coating thickness

					3								
Coating mass symbol	Z06	Z08	Z10	Z12	Z1-	4	Z1	8	Z20		Z22	Z25	Z27
Coating mass (g/m²)	60	80	100	120	14	0	18	0	200		220	250	275
Equivalent coating thickness (mm)	0.013	0.017	0.021	0.026	0.07	29	0.03	34	0.040		0.043	0.049	0.054
Coating mass symbol	Z35	Z37	Z45	Z6	0	FC)4	F	06	FC	8	F10	F12
Coating mass (g/m²)	350	370	450	60	0	4	0		60	8	0	100	120
Equivalent coating thickness (mm)	0.064	0.067	0.080	0.1	02	0.0	80	0.	013	0.0	17	0.021	0.026

Type and symbol of chemical treatment

Type of chemical treatment	Symbol
Untreated	М
Phosphate treatment	Р
Chromate treatment	С
Chromate-free treatment	NC

NOTE: The type of chemical treatment other than the above table may be agreed upon between the purchaser and the manufacturer, like chromate-free anti-finger print treatment(B).

Type and symbol of oiling

Type of oiling	Symbol
Oiled	0
Unoiled	×

NOTE: The type and the symbol of the sheets, corrugated sheets and coils shall be given in the table below. Unless otherwise specified, the non-alloyed coating shall be unoiled and the alloyed coating shall be oiled.

Type and symbol of surface finish for non-alloyed coating

Type of coating surface finish	Symbol	Remark
Minimized spangle	Z	A coating having the spangles obtained by restricting normal spangle formation to a minimum.
Regular spangle	R	A coating having the spangles as a result of the unrestricted growth of zinc crystals during normal solidification.

(2) ASTM A653

Coating mass

Inch-Pou	und Units	SI Units		
Coating mass symbol	Coating mass (oz/ft²)	Coating mass symbol	Coating mass (g/m²)	
G01	_	Z001	_	
G30	0.30	Z90	90	
G40	0.40	Z120	120	
G60	0.60	Z180	180	
G90	0.90	Z275	275	
G100	1.00	Z305	305	
G115	1.15	Z350	350	
G140	1.40	Z450	450	
G165	1.65	Z500	500	
G185	1.85	Z550	550	
G210	2.10	Z600	600	
G235	2.35	Z700	700	
G300	3.00	Z900	900	
G360	3.60	Z1100	1100	
A01	_	ZF001	_	
A25	0.25	ZF75	75	
A40	0.40	ZF120	120	
A60	0.60	ZF180	180	

Type and symbol of chemical treatment

Type of chemical treatment	Symbol
Untreated	М
Chromate treatment	С

NOTE: The type of chemical treatment other than the above table may be agreed upon between the purchaser and the manufacturer.

Type and symbol of oiling

Type of oiling	Symbol
Oiled	0
Unoiled	X

NOTE: The type and the symbol of the sheets, corrugated sheets and coils shall be given in the table below. Unless otherwise specified, the non-alloyed coating shall be unoiled and the alloyed coating shall be oiled.

Type and symbol of surface finish for non-alloyed coating

Type of coating surface finish	Symbol	Remark
Minimized spangle	Z	A coating having the spangles obtained by restricting normal spangle formation to a minimum.

(3) EN 10346

Equivalent coating thickness

Coating mass symbol	Z100	Z140	Z200	Z225	Z275	Z350	Z450	Z600	ZF100	ZF120
Coating mass (g/m²)	100	140	200	225	275	350	450	600	100	120

Type and symbol of chemical treatment

Type of chemical treatment	Symbol
Untreated	U
Sealed	S
Phosphate treatment	Р
Chemically passivated	С

NOTE: The type of chemical treatment other than the above table may be agreed upon between the purchaser and the manufacturer, like chromate-free anti-finger print treatment (B).

Type and symbol of oiling

Type of oiling	Symbol
Oiled	0
Unoiled	X

NOTE: The type and the symbol of the sheets, corrugated sheets and coils shall be given in the table below. Unless otherwise specified, the non-alloyed coating shall be unoiled and the alloyed coating shall be oiled.

Type and symbol of surface finish for non-alloyed coating

Type of coating surface finish	Symbol	Remark
Minimized spangle	М	A coating having the spangles obtained by restricting normal spangle formation to a minimum.
Normal spangle	N	A coating having the spangles as a result of the unrestricted growth of zinc crystals during normal solidification.

Type and symbol of surface qualities

Type of surface qualities	Symbol
As coated surface	А
Improved surface	В
Best quality surface	С

7.1.3.2 Electrolytic Galvanized Steel

JIS G3313/CSC Specification

Type and symbol of chemical treatment

Type of chemical treatment	Symbol
Untreated	
Chromate-free anti- finger treated	A/A

Type and symbol of oiling

Type of oiling	Symbol
Oiled	0
Unoiled	X

7.2 Tolerances

7.2.1 JIS G3302 Thickness tolerance for Hot-Dip Galvanized Steel

Unit: mm

width (w)	Thickness tolerance			
Nominal thickness (t)	630 ≦ w < 1000	1000 ≦ w < 1250	1250 ≦ w < 1600	1600 ≦ w
0.25 ≦ t < 0.40	±0.05	±0.05	±0.06	_
0.40 ≦ t < 0.60	±0.06	±0.06	±0.07	±0.08
0.60 ≦ t < 0.80	±0.07	±0.07	±0.07	±0.08
0.80 ≦ t < 1.00	±0.07	±0.08	±0.09	±0.10
1.00 ≦ t < 1.25	±0.08	±0.09	±0.10	±0.12
1.25 ≦ t < 1.60	±0.10	±0.11	±0.12	±0.14
1.60 ≦ t < 2.00	±0.12	±0.13	±0.14	±0.16
2.00 ≦ t < 2.50	±0.14	±0.15	±0.16	±0.18

NOTE: The thickness tolerance shall be measured at any point 25 mm or over from the side edge(the end in the width direction) •

7.2.2 JIS G3302 Width tolerance for Hot-Dip Galvanized Steel

Unit: mm

Width (w)	Tolerance on product width
w ≦ 1500	+7 O
1500 < w	+10 0

7.2.3 JIS G3302 Flatness tolerance for Hot-Dip Galvanized Steel

Unit: mm

Type of strain	Flatness tolerance (max.)		
width(w)	Bow, wave	Edge wave ⁽¹⁾	Centre buckle ⁽²⁾
w < 1000	12	8	6
1000 ≦ w < 1250	15	9	8
1250 ≦ w < 1600	15	11	8
1600 ≦ w	20	13	9

NOTE \div 1.Edge wave: wave apearing on the edge of steel sheet (end part in the width direction).

2. Centre buckle: wave appearing on the centre part of the steel sheet.

7.2.4 JIS G3302 Camber tolerance for Hot-Dip Galvanized Steel

Unit: mm

Width (w)	Maximum value of camber
630 ≦ w	2 in any 2000 length

7.2.5 ASTM A924M Thickness tolerance for Hot-Dip Galvanized Steel

Nominal thickness

Unit: mm

Width (w)	Thickness tolerance		
thickness(t)	w ≦ 1500	w > 1500	
t ≦ 0.40	±0.08	±0.08	
0.40 < t ≤ 1.00	±0.10	±0.10	
1.00 < t ≤ 1.50	±0.13	±0.13	
1.50 < t ≦ 2.00	±0.15	±0.15	
2.00 < t ≤ 2.40	±0.30	±0.34	

NOTE: The coated sheet thickness includes the base metal and coating and is measured at any point across the width of the coated sheet not less than 25mm from a side edge.

7.2.6 ASTM A924M Width, flatness, camber tolerance for Hot-Dip Galvanized Steel

Width tolerance

Unit: mm

AAP III . / . A	Width tolerance		
Width (w)	Upper limit	Lower limit	
800 ≦ w < 1200	5	0	
1200 ≦ w < 1500	6	0	
1500 ≦ w < 1880	8	0	

Flatness tolerance

Unit: mm

thickness(t)	Flatness tolerance (max.)		
width(w)	t ≦ 1.0	1.0 <t< td=""></t<>	
w ≦ 900	10	8	
900 < w ≦ 1500	15	10	
1500 < w ≦ 1880	20	15	

NOTE : 1. This table applies to all designations except SS, HSLAS.

Flatness tolerance

Unit: mm

		Flatness tolerance (max.)					
thickness(t)	width (w)	Strength N/mm² (max.)					
		275	340	380~410	480	550	
t ≦ 1.5	w ≦ 900	15	20	22	25	30	
	900 < w ≦ 1500	25	30	32	35	38	
	1500 < w	35	38	40	45	48	
1.5 <t< td=""><td>w ≦ 1500</td><td>15</td><td>20</td><td>22</td><td>25</td><td>30</td></t<>	w ≦ 1500	15	20	22	25	30	
	1500 < w	25	30	32	35	38	

NOTE: This table applies to all designations include SS, HSLAS.

Camber tolerance

Unit: mm

Length	Camber tolerance
In any 2000 length	Under 5

^{2.} This table also applies to sheet cut to length from coils by the consumer when adequate flattening measures are performed.

7.2.7 EN10143 Thickness tolerance for Hot-Dip Galvanized Steel

Nominal thickness

Width (w) Nominal thickness(t)	w ≦ 1200	1200 < w ≦ 1500	1500 < w
0.30 < t ≤ 0.40	±0.04	±0.05	±0.06
0.40 < t ≤ 0.60	±0.04	±0.05	±0.06
0.60 < t ≤ 0.80	±0.05	±0.06	±0.07
0.80 < t ≤ 1.00	±0.06	±0.07	±0.08
1.00 < t ≤ 1.20	±0.07	±0.08	±0.09
1.20 < t ≦ 1.60	±0.10	±0.11	±0.12
1.60 < t ≤ 2.00	±0.12	±0.13	±0.14
2.00 < t ≤ 2.40	±0.14	±0.15	±0.16

NOTE: 1. The coated sheet thickness includes the base metal and coating and is measured at any point across the width of the coated sheet not less than 40mm from a side edge.

2. Tolerance for steel grades with specified minimum proof strength $\rm R_{\rm p0.2} \le 260 MPa$

Nominal thickness

Unit: mm

Unit: mm

Width (w) Nominal thickness(t)	w ≦ 1200	1200 < w ≦ 1500	1500 < w
0.30 < t ≤ 0.40	±0.05	±0.06	±0.07
0.40 < t ≤ 0.60	±0.05	±0.06	±0.07
0.60 < t ≤ 0.80	±0.06	±0.07	±0.08
0.80 < t ≤ 1.00	±0.07	±0.08	±0.09
1.00 < t ≤ 1.20	±0.08	±0.09	±0.11
1.20 < t ≦ 1.60	±0.11	±0.13	±0.14
1.60 < t ≤ 2.00	±0.14	±0.15	±0.16
2.00 < t ≤ 2.40	±0.16	±0.17	±0.18

NOTE: 1. The coated sheet thickness includes the base metal and coating and is measured at any point across the width of the coated sheet not less than 40mm from a side edge.

2. Tolerance for steel grades with specified minimum proof strength 260MPa $\leq R_{p0.2} < 360$ MPa and for grade DX51D.

Nominal thickness

Unit: mm

Width (w) Nominal thickness(t)	w ≦ 1200	1200 < w ≦ 1500	1500 < w
0.30 < t ≤ 0.40	±0.05	±0.06	±0.07
0.40 < t ≤ 0.60	±0.06	±0.07	±0.08
0.60 < t ≤ 0.80	±0.07	±0.08	±0.09
0.80 < t ≤ 1.00	±0.08	±0.09	±0.11
1.00 < t ≤ 1.20	±0.10	±0.11	±0.12
1.20 < t ≦ 1.60	±0.13	±0.14	±0.16
1.60 < t ≤ 2.00	±0.16	±0.17	±0.19
2.00 < t ≤ 2.40	±0.18	±0.20	±0.21

NOTE: 1. The coated sheet thickness includes the base metal and coating and is measured at any point across the width of the coated sheet not less than 40mm from a side edge.

Nominal thickness

Unit: mm

Width (w) Nominal thickness(t)	w ≦ 1200	1200 < w ≦ 1500	1500 < w
0.30 < t ≤ 0.40	±0.06	±0.07	±0.08
0.40 < t ≤ 0.60	±0.06	±0.08	±0.09
0.60 < t ≤ 0.80	±0.07	±0.09	±0.11
0.80 < t ≦ 1.00	±0.09	±0.11	±0.12
1.00 < t ≦ 1.20	±0.11	±0.13	±0.14
1.20 < t ≦ 1.60	±0.15	±0.16	±0.18
1.60 < t ≤ 2.00	±0.18	±0.19	±0.21
2.00 < t ≤ 2.40	±0.21	±0.22	±0.24

NOTE: 1. The coated sheet thickness includes the base metal and coating and is measured at any point across the width of the coated sheet not less than 40mm from a side edge.

^{2.} Tolerance for steel grades with specified minimum proof strength 360MPa $\leqq R_{\text{p0.2}} <$ 420MPa

^{2.} Tolerance for steel grades with specified minimum proof strength 420MPa $\leq R_{\text{po.2}} < 900\text{MPa}$

7.2.8 EN10143 Width, flatness, camber tolerance for Hot-Dip Galvanized Steel

Width tolerance

Unit: mm

Width (w)	Width tolerance		
	Upper limit	Lower limit	
w ≦ 1200	5	0	
1200 < w ≦ 1500	6	0	
1500 < w ≦ 1800	7	0	
1800 < w	8	0	

Flatness tolerance

Unit: mm

Thickness (t)	Flatness tolerance (max.)	
Width (w)	t<0.70	0.70 ≦ t < 3.00
w < 1200	10	8
1200 ≦ w < 1500	12	10
1500 ≦ w	17	15

NOTE : Tolerance for steel grades with specified minimum proof strength $\rm R_{\rm p0.2} \le 260MPa$

Flatness tolerance

Unit: mm

Tradition tolorano			
Thickness (t)	Flatness tolerance (max.)		
Width (w)	t<0.70	0.70 ≤ t < 3.00	
w < 1200	13	10	
1200 ≦ w < 1500	15	13	
1500 ≦ w	20	19	

NOTE : Tolerance for steel grades with specified minimum proof strength 260MPa $\leq R_{p0.2} < 360$ MPa and for grade DX51D.

Camber tolerance

Unit: mm

Length	Camber tolerance (max.)	
L ≦ 2000	0.25%	
2000 < L	5 mm	

7.2.9 JIS G3313 Thickness tolerance for Electrolytic Galvanized Steel

Unit: mm

width(w) Nominal thickness(t)	630 ≦ w < 1000	1000 ≦ w < 1250	1250 ≦ w < 1600
0.40 ≦ t < 0.60	±0.05	±0.05	±0.06
0.60 ≦ t < 0.80	±0.06	±0.06	±0.06
0.80 ≦ t < 1.00	±0.06	±0.07	±0.08
1.00 ≦ t < 1.25	±0.07	±0.08	±0.09
1.25 ≦ t < 1.60	±0.09	±0.10	±0.11
1.60 ≦ t < 2.00	±0.11	±0.12	±0.13
2.00 ≦ t < 2.50	±0.13	±0.14	±0.15

NOTE: The thickness tolerance shall be measured at any point 15 mm or over from the side edge(the end in the width direction) •

$7.2.10 \ \mathsf{JIS} \ \mathsf{G3313} \ \mathsf{Width}, \ \mathsf{flatness}, \ \mathsf{camber} \ \mathsf{tolerance} \ \mathsf{for} \ \mathsf{Electrolytic} \ \mathsf{Galvanized} \ \mathsf{Steel}$

Width tolerance

Unit: mm

width (w)	Width tolerance
w < 1250	+7 O
1250 ≦ w	+10 0

Flatness tolerance

Unit: mm

Type of strain	Flatness tolerance (max.)		
Width (w)	Bow and wave	Edge wave ⁽¹⁾	Centre buckle ⁽²⁾
w < 1000	12	8	6
1000 ≦ w < 1250	15	9	8
1250 ≦ w < 1600	15	11	8
1600 ≦ w	20	13	9

NOTE: 1.Edge wave: wave apearing on the edge of steel sheet (end part in the width direction).

Camber tolerance

Unit: mm

Width (w)	Camber tolerance	
630 ≦ w	2 max.(Any portion 2,000 in length)	

^{2.} Centre buckle: wave appearing on the centre part of the steel sheet.

7.3 Classification of Quality

7.3.1 Hot-Dip Galvanized Steel

Classification	Quality	Common Specification	Typical Application
For Forming Fabrication	Commercial Quality(CQ)	JIS G3302 SGCC ASTM A653 CS\FS TYPE EN 10346 DX51D,DX52D	Computer case & parts \ Pre-painted base \ Deck \ Construction material \ LQF use \ OA Furniture and Cabinet
	Drawing & Deep Drawing Quality & Extreme Drawing Quality (DQ,DDQ,EDDQ)	JIS G3302 SGCD1~3 ASTM A653 DS,DDS EN 10346 DX53D~DX57D EN 10346 HX180~300YD	Household electrical appliances \ Inner or outer panel of automobile \ Air condition or washing machine case & frame \ Computer case & parts \ Automobile used steel
For Structural Uses	Structural Quality (SQ)	JIS G3302 SGC~XXX ASTM A653 SS-XX EN 10346 HX260~420 LAD	Slide rail \ Duck \ Auto-vending machines case & parts \ Steel door \ Construction material \ Automobile used steel

7.3.2 Electrolytic galvanized Steel Coils

Classification	Quality	Common Specification	Typical Application
	Commercial Quality (CQ)	JIS G3313 SECC	Computer case & parts \ Household electrical appliance \ LCD-TV parts
For Forming Fabrication	Drawing & Deep Drawing Quality & Extreme Drawing Quality (DQ,DDQ,EDDQ)	JIS G3313 SECD \ SECE \ SECF \ SECG	Household \ electrical appliance \ Machine caseetc.

8.1 Unit mass

Product Type	Min. Unit mass
Hot-dip Galvanized Coil	3t/Coil
Electrolytic Galvanized Coil	3t/Coil

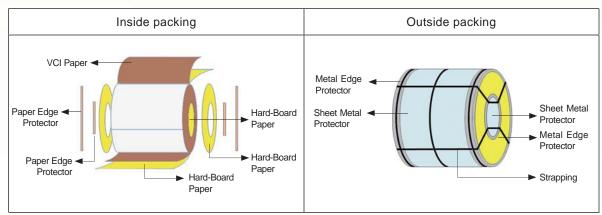
8.2 Available Sizes

Unit: mm

Product Type	Thickness	Width
Hot-dip Galvanized Coil	0.30~2.60	780~1830
Electrolytic Galvanized Coil	0.40~2.00	865~1525

NOTE: 1. The available sizes in the table above are for reference, and the details please refer China Steel web site(<u>www.csc.com.tw</u>): Customer service \rightarrow Production \rightarrow Available sizes and Thickness.

^{2.} If you have any question concerning steel specification, sizes, coating type, coating mass and chemical treatment, please contact CSGT or CSC technical service people.



9.1 Marking for Zn-coated steel

Marking Item	1	2	3	4	5	6	7	8	9	10	11
Product Category	CSC logo	CSC name	Product name	Specification	Size	Identification no	Net mass	Gross mass	Coating code	Quality type	Heat no
Hot-Dip Galvanized Coil	V	V	V	V	V	V	V	V	V	V	V
Electrolytic Galvanized Coil	V	V	V	V	V	V	V	V	V		V

9.2 Packing for Zn-coated steel

Packing Material	VCI	Hard-Boa	ard Pa	per	Par Edge P		Sheet Prote				etal Protector
Product Category	Paper	circumferential surface	side wall	inner surface	outside diameter	inside diamete	circumferential surface	side wall	inner surface	outside diameter	inside diameter
Hot-Dip Galvanized Coil	V		V				V		V	V	V
Electrolytic Galvanized Coil	V	V	V		V	V			V	V	V

(1) Rust Prevention

If antirust treatment is not properly performed for the Zn-coated steel products, it will be easy to rust the steel surface. Therefore, the coils have to be spread with proper rust preventive oil or chemical treatment according to the orders to protect zinc layer surface, and the coils are packed completely to protect them before shipping. However, the steel sheets and coils are easy to rust owing to the environmental factors during their storage and use. Especially the condensation problems are easy to occur when the coil storage is in an environment of high humidity and high/low temperature with rapid changes. Therefore, it should particularly pay attention to the prevention of condensation and drain water in advance. Besides, since the dust or acidic substance in the atmosphere are also easy to rust the surface of steel coils or sheets, such problems in the storage or processing must be eliminated for keeping good surface quality.

(2) Stretcher strain and Aging

There are solid solution Carbon and Nitrogen in the low carbon steels. If they are not treated properly, the stretcher strain marks will be occurred in the process. Therefore, the temper rolling process will be carried out appropriately on these products to eliminate the extension of yield point. However, the extension of yield point may appear again with the longer period of storage as we called the aging problem. Aging is mainly related to solid solution Carbon, storing temperature and time. The "first in, first out (FIFO)" management to use these grades of steel is recommended as soon as possible in order to avoid the aging problems.

(3) Decontamination of film treatment coils after processing

The surfaces of Zn-coated steel sheets are often treated with anti-finger print as a temporary antirust treatment. Such steel materials will again be degreased, decontaminated, rust removed and cleaned, and film antirust treated after processing. Since these treatments may cause discoloration and damages on the film of steel surface, the operations toward to the lower concentration of medicament, the lower processing temperature, and shorter processing time will be advantageous. Concrete recommendations are as follows:

- a. The pH of degreasing liquid is recommended as 7.0 < pH < 10.0. It is possibly close to the room temperature and not to take much time to treat degreasing liquid.
- b. Please use the non-polar solvents to clean samples and graze it slightly. Do not use the polar organic solvents.
- c. If the products are needed to dry, the drying temperature and time are maximum 180°C and maximum 15 minutes respectively.

(4) Painting

The painting is one of the common ways to apply for further protecting the Zn-coated steel products, or enhancing their beauty and function. The selection of types of paint and the adoption of painting methods have to carefully consider the shape of products, the application, and the environment-friendly requirements.

Simple painting mode

Surface cleaning → painting → baking

It may paint directly on the surface of cleaned substrate. The choice of paint should consider the compatibility with the post-treatment layer.

- Durability painting mode

Surface cleaning → chemical treatment → painting → baking

These products are suitable for the long-term use and high-corrosion-resistance requirements. The substrates of application are usually the cold-rolled steels or Zn-coated steels with oiled. It should wait for painting on the cleaned substrate surfaces after the overall chemical passivation reaction with chemical medicament is produced. The passivated films can keep the paints from directly contacting with active metals, and have long-term stability to protect the products. Common chemical treatment is phosphate-zinc treatment. The densely phosphate-zinc crystals can improve the adhesion between the primer and the substrate. The multi-level painting should consider the compatibility with the paints.

— The factors of failure coating

- (a) Insufficient clean: The residual oil and contaminant are often seen on the steel surfaces. These foreign matters may cause the paint to be unable to bond to the substrate surfaces, and may result in declining to fail the adhesion of film. It is better to understand the rust preventive oil, lubricants and other characteristics, proper choosing the way of cleaning and cleaning agents, paying more attention to storage conditions and painting operation environment for helping to improve the insufficient clean.
- (b) Unsuitable chemical treatment: If the passivation film of chemical treatment is not sufficient or uneven, once outside corrosion factors are contacted with metal, the reactive metal is very easy to oxidize. Then oxide will thoroughly destroy the adhesion of primer paint to the steel surface. Moreover, if there are loose passivation films and coarse crystals or the residue contamination on the chemical treatment liquid, it will also cause the deficiency of the film adhesion. It is better to understand the reaction properties of the chemical treatment liquid, paying more attention on the differences between different cold-rolled steel sheet surfaces, properly adjusting the treatment liquid concentration, temperature and time, as well as emphasizing on the clean of the treated surface.
- (c) Improper paint: The environment and the end-use of products should be considered in the selection of paint, and the appropriate painting procedure should be adopted to ensure that the treated substrate surfaces are sufficiently wetted, are compatible with the paint, and have the ability to resist the environmental corrosion factors.

(5) Welding

- a. To compare with cold-rolled steel sheets, the Zn-coated steel sheets have lower resistance values and need more welding current or longer welding time to obtain sufficient resistance welding heat.
- b. The foreign matter phenomenon contaminated with electrodes in the welding process occurs easily when the Zn-coated steel coils or sheets are used. The electrode durability of the Zn-coated steel products is lower than that of cold rolled coils or sheets. Therefore, the electrode must be replaced or polished during welding if necessary.
- c. If the welding parameters (welding time and welding current) can be adjusted properly, the Zn-coated steel sheets can get similar weld lobe curve and welding strength to the cold-rolled steel sheets.
- d. The resistance welding process as an example, if you want to weld the Zn-coated steel sheets (GA), please refer to the following table of suggested welding parameters to ensure stable welding quality.
- e. If the destructive test of the welding-core is needed to perform, please refer to the JIS Z3136 and Z3137 specifications.

Suggested welding parameter table of resistance welding

Thickness of Steel (mm)	Electrode force (kgf)	Electrode Face Diameter (mm)	Holding time before welding (cyc)	Welding time (cyc)	Welding Current (kA)	Holding time after welding (cyc)
0.30~0.49	170	5	> 30	9	Expulsion of welding current-0.4	2
0.50~0.69	180	5	> 30	10	Expulsion of welding current-0.4	2
0.70~0.89	210	6	> 30	11	Expulsion of welding current-0.4	2
0.90~1.09	230	6	> 30	12	Expulsion of welding current-0.4	3
1.10~1.29	250	6	> 30	14	Expulsion of welding current-0.4	3
1.30~1.49	270	6	> 30	16	Expulsion of welding current-0.4	3
1.50~1.69	300	6	> 30	18	Expulsion of welding current-0.4	4
1.70~1.89	340	6	> 30	20	Expulsion of welding current-0.4	4
1.90~2.09	380	6 or 8	> 30	22	Expulsion of welding current-0.4	4
2.10~2.29	420	6 or 8	> 30	26	Expulsion of welding current-0.4	6
2.30~2.49	450	8	> 30	28	Expulsion of welding current-0.4	6

CONVERSION TABLES

_	ft	inch	mm	m
	1	12	304.8	0.3048
Length	0.08333	1	25.4	0.0254
	0.003281	0.03937	1	0.001

Mass	1 kg = 2.20462 lb

Force	1 kgf = 9.80665 N

	ksi(=1000psi)	psi	kgf/mm²	N/mm²(Mpa)	
	1	1000	0.70307	6.89476	
Stress	0.001	1	7.0307×10 ⁻⁴	6.89476×10 ⁻³	
	1.42233	1422.33	1	9.80665	
	0.145038	145.038	1.101972	1	

	ft-lbf	kgf-m	N-m (=Joule)
Absorbed	1	0.138255	1.35582
Energy	7.23301	1	9.80665
	0.737562	0.101972	1

Conversion Table from HR30T to HRB

HR30T	Converted HRB	HR30T	Converted HRB	HR30T	Converted HRB	HR30T	Converted HRB
35.0	28.1	47.0	46.0	59.0	63.9	71.0	81.9
36.0	29.6	48.0	47.5	60.0	65.4	72.0	83.4
37.0	31.1	49.0	49.0	61.0	66.9	73.0	84.9
38.0	32.5	50.0	50.5	62.0	68.4	74.0	86.4
39.0	34.0	51.0	52.0	63.0	69.9	75.0	87.9
40.0	35.5	52.0	53.5	64.0	71.4	76.0	89.4
41.0	37.0	53.0	55.0	65.0	72.9	77.0	90.8
42.0	38.5	54.0	56.5	66.0	74.4	78.0	92.3
43.0	40.0	55.0	58.0	67.0	75.9	79.0	93.8
44.0	41.5	56.0	59.5	68.0	77.4	80.0	95.3
45.0	43.0	57.0	60.9	69.0	78.9	81.0	96.8
46.0	44.5	58.0	62.4	70.0	80.4	82.0	98.3

Note: This table shall be in according with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation \circ

Conversion Table from HR15T to HRB

HR15T	Converted HRB	HR15T	Converted HRB	HR15T	Converted HRB	HR15T	Converted HRB
70.0	28.8	76.0	47.3	82.0	65.8	88.0	84.3
70.5	30.3	76.5	48.8	82.5	67.3	88.5	85.8
71.0	31.9	77.0	50.4	83.0	68.8	89.0	87.3
71.5	33.4	77.5	51.9	83.5	70.4	89.5	88.9
72.0	35.0	78.0	53.4	84.0	71.9	90.0	90.4
72.5	36.5	78.5	55.4	84.5	73.5	90.5	92.0
73.0	38.0	79.0	56.5	85.0	75.0	91.0	93.5
73.5	39.6	79.5	58.1	85.5	76.6	91.5	95.0
74.0	41.1	80.0	59.6	86.0	78.1	92.0	96.6
74.5	42.7	80.5	61.1	86.5	79.6	92.5	98.1
75.0	44.2	81.0	62.7	87.0	81.2	93.0	99.7
75.5	45.7	81.5	64.2	87.5	82.7		

Note: This table shall be in according with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation •

Conversion Table from HV to HRB

HV	Converted HRB	HV	Converted HRB	HV	Converted HRB	HV	Converted HRB
85	41.0	145	76.6	210	93.4	330	_
90	48.0	150	78.7	220	95.0	340	(108.0)
95	52.0	155	79.9	230	96.7	350	_
100	56.2	160	81.7	240	98.1	360	(109.0)
105	59.4	165	83.1	250	99.5	370	_
110	62.3	170	85.0	260	(101.0)	380	(110.0)
115	65.0	175	86.1	270	(102.0)		
120	66.7	180	87.1	280	(103.5)		
125	69.5	185	88.8	290	(104.5)		
130	71.2	190	89.5	300	(105.5)		
135	73.2	195	90.7	310			
140	75.0	200	91.5	320	(107.0)		

Note: 1. This table shall be in according with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation.

^{2.} The value in parentheses is out of the scope of HRB and for reference.It may be reported as the round number

RISON
OF SPECIFICATION

classification	JIS G3302	JFS A3011	ASTM A653	EN 10346
	SGCC		CS A,B,C	DX51D
	SGCC	JAC270C		DX52D
	SGCD1	JAC270D		DX53D
Mild Steel	SGCD2			
	SGCD3	JAC270E	DDS A	DX54D
	SGCD4	JAC270F	EDDS	DX56D
Bake-hardening		JAC270H		HX180BD
Steel		JAC340H		HX220BD
		JAC340P		HX220YD,HX220
Deep-drawing Steel				HX260YD
		JAC440P		HX300YD
		JAC340W		
High Strength Steel		JAC390W		
		JAC440W		
				HX260LAD
				HX300LAD
	SGC 440			HX340LAD
High Yield Ratio Steel		JAC440R	HSLAS50(340)	
				HX380LAD
				HX420LAD
		JAC590R		
		JAC590Y		HDT600X
Low Yield Ratio Steel		JAC780Y		HDT780X
		JAC980Y		HDT980X
			SS 33(230)	S220GD
Christian Charle	SGC340		SS 37(255)	
Structure Steel	SGC400		SS 40(275)	S280GD
	SGC490			

Note : The grades of these specifications are similar, not the same in the above table

Required Ordering Data			Example		
Specification (Name, Number, Grade)					
	Coating Type	ZZ(GI), ZF(GA)			
1	Coating Thickness	Z08, Z12, F06, F08…etc.			
	Chemically Treatment Type	M, C, P, NC	JIS G3302 SGCC ZSBX UE		
Surface Quality		General (GP)			
	Surface Quality	Exposed (GE)			
		Unexposed (UE)			
2	Oiling		Unoiled		
3	Dimensions (Thickness × Width × Length (or coil))		1.0mm×1219mm×Coil		
4	Coil size (Inside Dimensions, Outside Dimensions)		ID 508mm OD 1650mm max.		
5	Mass	Max. Mass	10t max.		
	IVId55	Order Mass	45t		
6	Application and	Fabrication Methods	Welded Pipe		
7	Special Require	ements (if Required)	HRB 55max.		

- (1) The contents of this catalog are for reference only, customers are urged to consult the specifications published by the corresponding Associations.
- (2) Information of the available steel grades, sizes, marking and packing as shown herein may be updated without notice to comply with actual production situations.
- (3) We invite you to contact our Head Office should you have any questions concerning steel specifications or ordering requirements.

Phone number are listed below for your convenience. Numbers of our international Offices are shown on the back cover.

1.Sales services

CHINA STEEL GLOBAL TRADING CORPORATION

Address: 10F, NO.88, Cheng gong 2nd Rd, Qian zhen, Kaohsiung 80661 Taiwan, Republic of China.

Tel: 886-7-3322168 | Fax: 886-7-3356411 | E-mail: c00681@mail.csc.com.tw

CSGT JAPAN CO., LTD.

Address: 2F, Osaka U2 Bldg., 4-7 Uchihonmachi 2-Chome, Chuoku, Osaka 540-0026, Japan

CSGT HONG KONG LIMITED

Address: ROOM 1407,14/F, WORLD WIDE HOUSE, 19 DES VOEUX ROAD, CENTRAL, HONG KONG

CSGT (SHANGHAI) CO.,LTD.

Address: 21F, NO.1468 NAN JING WEST RD., SHANGHAI 200040

CSGT (SINGAPORE) PTE, LTD.

Address: #14-01, MAS BUILDING, 10 SHENTON WAY SINGAPORE 079117

Tel: 65-62238777~8 | Fax: 65-62256054 | E-mail: changcc@csgtsg.com.sg

2.Metallurgical Department

Technical Service Section-Metallurgy: 886-7-8021335

Metallurgical Specification and Testing Section: 886-7-8021111 Ext. 5797

Head Office

- Address: #1, Chung Kang Rd., Hsiao Kang, Kaohsiung 81233, Taiwan, Republic of China
- Tel: 886-7-802-1111
- Fax: 886-7-802-2511, 801-9427
- Web: http://www.csc.com.tw

China Steel Building (Group Headquarters)

- Address: #88, Chenggong 2nd Rd., Qianzhen, Kaohsiung 80661, Taiwan, Republic of China
- Tel: 886-7-337-1111
- Fax: 886-7-537-3570

Taipei Liaison Office

- Address : Room A, 28F, #7, Sec.5, Xinyi Rd., Xinyi, Taipei 11049, Taiwan, Republic of China
- Tel: 886-2-8758-0000
- Fax: 886-2-8758-0007

Osaka Office

- Address: 1F, Osaka U2 Bldg., 4-7Uchihonmachi 2-Chome, Chuoku, Osaka 540-0026, Japan.
- Tel: 81-6-6910-0888
- Fax: 81-6-6910-0887

Singapore Office

- Address: #14-01 Mas Building, 10 Shenton Way, Singapore 079117
- Tel: 65-6223-8777-8
- Fax: 65-62256054

(Manual download)

CAT.NO.3-CT-01-2014-E1