
# **Cold Rolled Steel**





# The quality policy of China Steel Corporation China Steel Corporation, based-on customer orientation, will incessantly innovate,







# CHINASTEEL

China Steel Corporation (CSC), located at Kaohsiung, Taiwan was founded in December 1971. With annual capacity (in terms of crude steel) around 10 million tonnes, CSC produces a range of products that includes plates, bars, wire rods, hot and cold rolled coils, electrogalvanized coils, electrical steel coils, hot-dip galvanized coils, and Ti/ Ni-base alloy. The domestic market takes roughly 65% of CSC's production and the exports take the remaining 35%. CSC is the largest steel company in Taiwan, enjoying more than 50% of the domestic market. Major export destinations are Mainland China, Japan and Southeast Asia.

CSC is very active in innovation, and has strong capability to put the innovations into practice. The company's vision is: "We aspire to be a trustworthy steel company of global distinction that pursues growth, environmental protection, energy saving and value-innovation". CSC actively puts into practice its corporate values of "teamwork, entrepreneurial approach, down-to-earthiness and pursuit of innovation", as well as its operations beliefs of " promotion of social well-being, result orientation, implementation of teamwork, and emphasis on employees' self-realization." CSC keeps deepening the roots for its core business in steel, and devoted to integrate the related downstream industries to foster healthy development and international competitiveness of Taiwan's steel related industry.



Plant Greening





China Steel Corporation (CSC) is an integrated steel producer. After its phase II expansion construction was completed on June 30, 1982, CSC launched its production of Cold Rolling Mill. Subsequently, CSC went through to complete its phases III and IV expansion constructions. Products include cold-rolled coils, magnetic steel coils, electro-galvanized coils, hot-dip galvanized coils and color coils. This manual introduces cold rolled coils only.

CSC's Cold Rolling Mill has numerous and complete production lines. Through unceasing developments and improvements over the years, cold rolled coils are diversified from narrow to wide, thin to thick, soft to hard and dull to bright. The available thickness of cold-rolled coils can be provided is  $0.20 \sim 3.20$ mm, and available width is 780  $\sim$  1830mm. They are available for various processing uses and have been sufficient to meet the requirements of industries, such as forming soft steels, high strength steel sheets with improved formability for automobile structures, automobile structure steels with high strength dual-phase, steel sheets for fine blanking, steel sheets for slide rails, decarburized steel sheets and strips for porcelain enameling, as well as coldrolled medium carbon steels, high carbon steels, alloy steels and special steel strips, etc.

Through the integrated quality management of iron making, steelmaking and steel rolling to the release and shipping of finished products, CSC's cold-rolled steel products are excellent in their internal and external quality, dimensional accuracy and processing properties, as well as have been approved for various related certifications such as ISO 9001, ISO/TS16949, JIS MARK, and IECQ QC080000 (Hazardous Substance Process Management). They meet

the regulations of RoHS (Restriction of Hazardous Substances Directive) and REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances), and are verified through Certification of high-strength grades by the well-known carmakers. The quality is good enough to meet customers' needs.

The vision of CSC's customer services is to gain customers' appreciation and trust and help them be successful, and the aim of that is to promote customers' technology and upgrade the steel industry. In order to enhance the customer services, CSC adopts multi-step and multi-level service pattern which is characterized by emphasizing on (1) the pre-sale services for helping customers to choose suitable materials and improve their production processes; (2) handling complains and claims from customers with proper and rapid manner, and conducting customers the corresponding improvements to the root-causes; (3) providing customers with the developed high-grade materials to meet the upgrade policy for domestic industries.

The stable and reliable quality of CSC's steel products have gained the acceptance of domestic industries widely, and CSC has also been selected as the first priority provider to purchase their needed steel materials owing to CSC's quick and efficient technical services. CSC will continue to improve customer services and the technical technologies both for customers and CSC itself to promote steel-use industries' international competitiveness.

# JFS JSC980Y Ultra-high strength structural steel for automobile

The tensile strength of this grade could reach 980 MPa above by formation of dual phase structure which combines the ductile ferrite and high strength martensite. By characteristics with high strength and superior ductility, this is an important material for light-weighted energy saving automobile design including application for safety structural parts, bumper, seat skid parts, etc.

# EN HC420LA High strength low alloy (HSLA) structural steel

The yield strength of this grade could reach 420 MPa above in adoption of HSLA type steel structure which shows the high yield ratio, fine work formation and weldability. This is also an important material for light-weighted energy saving automobile design.

# JFS JSC340H High strength baked-hardening (BH) steel

The tensile strength of this grade could reach 340 MPa above which processes the character of fine stamping formation and baked hardening. The material could be served as light-weighted energy saving automobile part such as outer panel or body construction which is strengthened after coating baked treatment.

# **SAE 1552**

SAE1552 belongs to high manganese carbon steel with excellent cleanness and high strength after suitable heat treatment. The characteristics of this product fit in with requirements of manufacturing timing chain of automobile engine.

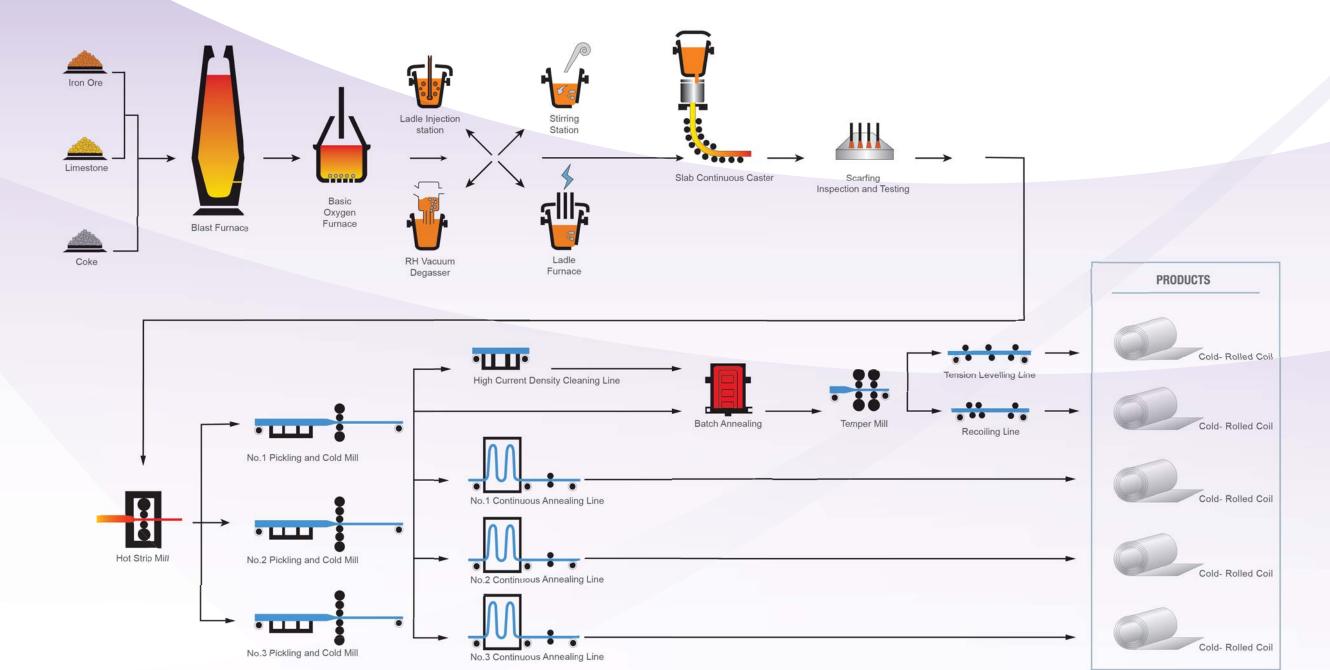
# **JIS G3311 SKS51M**

SKS51M belongs to alloy tool steel with high hardness, high strength, great flatness and suitable for application of saw blade.

# **CSC CC8660**

CSC CC8860 belongs to nickle chrome molybdenum steel with excellent anti-abrasion, anti-impact, anti-deformation and can be applied to chain saw for lumbering.

# JIS G3125 SPA-C


JIS G3125 SPA-C is superior atmospheric corrosion resisting cold rolled steel and can be used in environment containing sulfuric waste gas.











# **Pickling**

# **Cold rolling**



The main purpose of this stage is to remove the scale of hot rolled coil by heated solution of hydrochloric acid for its smooth surface finish.



The pickled coils are rolled into specified thickness by cold rolled mills with controlled rolling force and strip tension. Based on strip center and edge part measurements of the thickness at the entry and delivery sides of the mills, either the strip center or edge thickness deviation is minimized by the computer-controlled system.

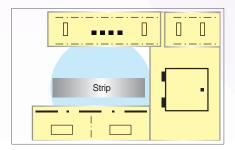
# **Annealing**



The steel strip is significantly hard and brittle after cold rolling which the grains are elongated along with lots strain energy. To obtain the desired mechanical properties of strip, the coils shall be piled and covered by the box which called batch annealing or the strip is continuous treated in furnace which called continuous annealing. Both annealing technology are possessed in CSC according to different product requirements.

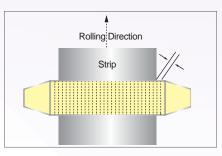
# **Temper Rolling**




After the annealing, the strip is slightly rolled by the skinpass mill to avoid the common defect called stretcher strain and adjusting mechanical properties. The strip surface roughness is also determined by this stage.

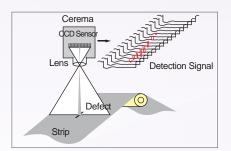
# **Finishing and Inspection**




The entire coil strip thickness, width and surface quality are checked by automatic inspection system and well-trained inspectors in this stage. After the oil applied over strip surface, the product coil is cut into specified mass.

# Edge Drop Measurement(EDM) System




The thickness deviation with the whole coil is automatically inspected by the X-ray generated system to assure the thickness accuracy.

# **Shape-meter Roll**



The rolling controlled could be dynamically adjusted depending on the simultaneous measurement result of strip flatness by shape-meter roll.

# **Automatic Surface Inspection System**

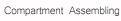


Both sides of strip surface with entire coil length are automatically inspected by the high resolution camera system to assure the strip surface quality.





Automobile


Seats of Automobile



Slide

Metal Ceiling







Containers

# 7.1 Chemical Compositions and Mechanical Properties

## 7.1.1 Carbon Steel Sheet for of Forming Fabrication

(1) JIS G3141-2011 SPCC/SPCD/SPCE/SPCF/SPCG (-SD, Standard temper)

|                                    | Specification               |                    |      |                           | JIS G31   | 141   |       |         |
|------------------------------------|-----------------------------|--------------------|------|---------------------------|-----------|-------|-------|---------|
|                                    | Symbol of Grade             |                    | SPCC | SPCCT <sup>(NOTE 2)</sup> | SPCD      | SPCE  | SPCF  | SPCG    |
|                                    | C n                         | nax.               |      | 0.15                      | 0.10      | 0.08  | 0.06  | 0.02    |
| Chemical                           | Mn n                        | nax.               | 0.60 |                           | 0.50      | 0.45  | 0.45  | 0.25    |
| Composition                        | P n                         | nax.               | (    | 0.100                     | 0.040     | 0.030 | 0.030 | 0.020   |
| %                                  | S n                         | nax.               | (    | 0.035                     | 0.035     | 0.030 | 0.030 | 0.020   |
|                                    | Si r                        | nax.               |      | _                         |           |       | _     | _       |
|                                    | Tensile Strength N/mm² min. | 0.25 ≦ t           | _    | 270                       | 270       | 270   | 270   | 270     |
| Tension                            | Yield Point N/mm² max.      | 0.25 ≦ t           | _    | _                         | (240)     | (220) | (210) | (190)   |
| Test                               |                             | 0.25 ≦ t<br>< 0.30 | _    | 28                        | 30        | 32    | _     | _       |
| No.5<br>test piece                 |                             | 0.30 ≦ t<br>< 0.40 | _    | 31                        | 33        | 35    | _     | _       |
|                                    | Elongation<br>% min.        | 0.40 ≦ t<br>< 0.60 | _    | 34                        | 36        | 38    | 40    | 42      |
| direction Thickness(t)             |                             | 0.60 ≦ t<br>< 1.00 | _    | 36                        | 38        | 40    | 42    | 44      |
| mm                                 |                             | 1.00 ≦ t<br>< 1.60 | _    | 37                        | 39        | 41    | 43    | 45      |
|                                    |                             | 1.60 ≦ t<br>< 2.50 | _    | 38                        | 40        | 42    | 44    | 46      |
|                                    |                             | 2.50 ≦ t           | _    | 39                        | 41        | 43    | 45    | _       |
| The av                             | verage ratio                | 0.50 ≤ t ≤<br>1.00 | _    | _                         | _         | _     | _     | 1.5min. |
| of pla                             | astic strain <del>r</del>   | 1.00 <<br>t ≦ 1.60 | _    | _                         | _         | _     | _     | 1.4min. |
| Bend Test<br>No.3                  | Bend A                      | Angle              |      |                           | ( 180°    | )     |       | _       |
| test piece<br>rolling<br>direction | Inside Clearance            |                    |      |                           | Flat on I | tself |       |         |

Notes: 1. Alloying elements other than those in the above table can be added as necessary.

2. For SPCC that guarantees tensile strength and elongation.

Remarks: 1. For those less than 0.60 mm in thickness, as a rule, the tension test shall be omitted.

- 2. SPCF and SPCG shall be guarantees for non-ageing property for six months after shipment from the manufacturer's factory.
- The upper limit of yield point or proof stress in parenthesis is informative and can be applied when agreed upon between the purchaser and the supplier.

#### (2) JIS G3141-2011 SPCC - 1D/2D/4D/8D

| Specif    | ication          | JIS G3141 |               |                 |                |  |  |  |  |
|-----------|------------------|-----------|---------------|-----------------|----------------|--|--|--|--|
| Classif   | ication          | SPCC-1D   | SPCC-2D       | SPCC-4D         | SPCC-8D        |  |  |  |  |
| Hardness  | HRB              | 85 min.   | 74~89         | 65~80           | 50~71          |  |  |  |  |
| Haruness  | HV               | 170 min.  | 135~185       | 115~150         | 95~130         |  |  |  |  |
| Bend Test | Bend Angle       | _         |               |                 |                |  |  |  |  |
| Dend Test | Inside Clearance | _         | Thickness×2.0 | Thickness × 1.0 | Flat on Itself |  |  |  |  |

Notes: As to hardness, either HRB or HV shall be applied.

# (3) JIS G3141 SPCG-SD MR (Improve $\overline{r}$ )

| Symbol of Grade | Thickness<br>(t) mm | Tensile Strength<br>N/mm² | Yield Point<br>N/mm² | Elongation<br>% | $\frac{-}{r}$ |  |
|-----------------|---------------------|---------------------------|----------------------|-----------------|---------------|--|
|                 | 0.60 ≦ t < 0.80     |                           | 175max.              | 46min.          |               |  |
| SPCG-SD         | 0.80 ≦ t < 1.00     | 270 min.                  | 165max.              | 47min.          | 1.8min.       |  |
|                 | t = 1.00            |                           | 155max.              | 48min.          |               |  |

#### (4) ASTM A1008-2012

| Cumbal                           | of Crada                       |                | CS Type           |               | DS .             | Туре      | DDS <sup>F,G</sup> | EDDS <sup>J</sup> |  |  |
|----------------------------------|--------------------------------|----------------|-------------------|---------------|------------------|-----------|--------------------|-------------------|--|--|
| Symbol o                         | or Grade                       | $A^{D,E,F,G}$  | $B^{D}$           | $C^{D,E,F,G}$ | A <sup>E,I</sup> | В         | סטט                | EDD2              |  |  |
|                                  | С                              | 0.10max.       | 0.02~0.15         | 0.08max.      | 0.08max.         | 0.02~0.08 | 0.06max.           | 0.02max.          |  |  |
|                                  | Mn max.                        |                | 0.60              |               | 0.9              | 50        | 0.50               | 0.40              |  |  |
|                                  | P max.                         | 0.0            | 30                | 0.100         | 0.0              | 20        | 0.020              | 0.020             |  |  |
|                                  | S max.                         |                | 0.035             |               | 0.0              | 30        | 0.025              | 0.020             |  |  |
|                                  | Al min.                        |                | <sup>A</sup>      |               | 0.01             | 0.02      | 0.01               | 0.01              |  |  |
|                                  | Si                             |                |                   |               | A                |           |                    |                   |  |  |
| Chemical _<br>Composition _<br>% | Cu max.                        |                | 0.20 <sup>H</sup> |               | 0.7              | 20        | 0.20               | 0.10              |  |  |
|                                  | Ni max.                        |                | 0.20              |               | 0.7              | 20        | 0.20               | 0.10              |  |  |
|                                  | Cr max. <sup>B</sup>           |                | 0.15              |               | 0.               | 15        | 0.15               | 0.15              |  |  |
|                                  | Mo max.                        |                | 0.06              |               | 0.0              | 26        | 0.06               | 0.03              |  |  |
|                                  | V max.                         |                | 0.008             |               | 0.0              | 008       | 0.008              | 0.10              |  |  |
|                                  | Nb max.                        |                | 0.008             |               | 0.0              | 800       | 0.008              | 0.10              |  |  |
|                                  | Ti max. <sup>c</sup>           |                | 0.025             |               | 0.0              | 25        | 0.025              | 0.15              |  |  |
|                                  | Ν                              |                |                   |               | A                |           |                    |                   |  |  |
|                                  | В                              |                |                   |               | <sup>A</sup>     |           |                    |                   |  |  |
|                                  | Bend Angle                     | 180°           |                   |               |                  |           |                    |                   |  |  |
| Composition %                    | Radius<br>of Inside<br>Surface | Flat on Itself |                   |               |                  |           |                    |                   |  |  |

Remarks: A. Where an ellipsis(···) appears in the table, there is no requirement, but the analysis result shall be reported.

- B. Chromium is permitted, at the purchaser's option, to 0.25 % maximum when the carbon content is less than or equal to 0.05 %.
- C. For steels containing 0.02 % or more carbon, titanium is permitted at the producer's option, to the lesser of 3.4N+1.5S or 0.025 %.
- D. When an aluminum deoxidized steel is required for the application, it is permissible to order commercial steel (CS) to a minimum of 0.01 % total aluminum.
- E. Specify Type B to avoid carbon level below 0.02 %.
- F. It is permissible to furnish as a vacuum degassed or chemically stabilized steel, or both, at the purchaser's option.
- G. For carbon contents less than or equal to 0.02 %, it is permissible to use vanadium, columbium or titanium, or a combination thereof, as stabilizing elements at the purchaser's option. In such cases, the applicable limit for vanadium or columbium shall be 0.10 % max. and limit for titanium shall be 0.15 % max.
- H. When copper steel is specified, the copper limit is a minimum requirement. When copper steel is not specified, the copper limit is a maximum requirement.
- I. If produced utilizing a continuous anneal process, stabilized steel is permissible at the producer's option, and Footnotes F and G apply.
- J. Shall be furnished as vacuum degassed and stabilized steel.

#### (5) EN 10130- 2006

|                   | Symbol of Grade                                        | DC01    | DC03    | DC04    | DC05    | DC06    |
|-------------------|--------------------------------------------------------|---------|---------|---------|---------|---------|
|                   | C max.                                                 | 0.12    | 0.10    | 0.08    | 0.06    | 0.02    |
| Chemical          | Mn max.                                                | 0.60    | 0.45    | 0.40    | 0.35    | 0.25    |
| Composition       | P max.                                                 | 0.045   | 0.035   | 0.030   | 0.025   | 0.020   |
| %                 | S max.                                                 | 0.045   | 0.035   | 0.030   | 0.025   | 0.020   |
|                   | Ti max.                                                |         | _       | _       | _       | 0.3(2)  |
| Tension Test      | Tensile Strength MPa                                   | 270~410 | 270~370 | 270~350 | 270~330 | 270~330 |
| Type 2            | Proof Stress MPa max.                                  | 280     | 240     | 210     | 180     | 170     |
| test piece        | Elongation % min.                                      | 28      | 34      | 38      | 40      | 41      |
| Perpendicular     | ratio of plastic strain r <sub>90</sub> min.           | _       | 1.3     | 1.6     | 1.9     | 2.1     |
| rolling direction | tensile strain hardening exponent n <sub>90</sub> min. | _       | _       | 0.180   | 0.200   | 0.220   |

Notes : 1. 1MPa=1 N/mm<sup>2</sup>

- 2. Titanium may be replaced by niobium. Carbon and nitrogen shall be completely bound.
- 3. When the thickness is less than or equal to 0.7 mm and greater then 0.5 mm, the minimum value for elongation is reduced by 2 units. For a thickness less then or equal to 0.5 mm, the minimum value is reduced by 4 units.
- 4. The values of  $r_{90}$  and  $n_{90}$  only apply to products with a thickness equal to or greater than 0.5 mm.
- 5. When the thickness is over 2 mm, the value for  $\rm r_{90}$  is reduced by 0.2.
- 6. For design purposes the lower limit of Yield Proof Stress for grades DC01, DC03, DC04 and DC05 may be assumed to be 140 MPa.

# 7.1.2 High Strength Steel Sheets with Improved Formability for Automobile Structural Uses

#### (1) JIS G3135-2006

|          |          |         | Tension Tes      | t                |                       | Bend Test  Bend Radius of Test Piece  Flat on itself Flat on itself Flat on itself  Flat on itself |                 |                              |  |
|----------|----------|---------|------------------|------------------|-----------------------|----------------------------------------------------------------------------------------------------|-----------------|------------------------------|--|
| Symbol   | Tensile  | Proof   | Elonga           | ition %          | _                     |                                                                                                    |                 |                              |  |
| Grade    | Strength | Stress  | Thickness        | (t) mm           | Test<br>Piece         |                                                                                                    |                 |                              |  |
|          | N/mm²    | N/mm²   | 0.6 ≦ t<br>< 1.0 | 1.0 ≦ t<br>≦ 2.3 |                       |                                                                                                    |                 |                              |  |
| SPFC340  | 340min.  | 175min. | 34min.           | 35min.           |                       |                                                                                                    | Flat on itself  |                              |  |
| SPFC370  | 370min.  | 205min. | 32min.           | 33min.           |                       |                                                                                                    | Flat on itself  |                              |  |
| SPFC390  | 390min.  | 235min. | 30min.           | 3 1min.          |                       |                                                                                                    | Flat on itself  |                              |  |
| SPFC440  | 440min.  | 265min. | 26min.           | 27min.           |                       |                                                                                                    | Flat on itself  | JIS<br>No.3<br>Perpendicular |  |
| SPFC490  | 490min.  | 295min. | 23min.           | 24min.           | JIS                   |                                                                                                    | Flat on itself  |                              |  |
| SPFC540  | 540min.  | 325min. | 20min.           | 2 1min.          | No.5<br>Perpendicular | 180°                                                                                               | Thickness × 0.5 |                              |  |
| SPFC590  | 590min.  | 355min. | 17min.           | 18min.           | to rolling direction  | 100                                                                                                | Thickness × 1.0 | to rolling<br>direction      |  |
| SPFC490Y | 490min.  | 225min. | 24min.           | 25min.           |                       |                                                                                                    | Flat on itself  |                              |  |
| SPFC540Y | 540min.  | 245min. | 21min.           | 22min.           |                       |                                                                                                    | Thickness × 0.5 |                              |  |
| SPFC590Y | 590min.  | 265min. | 18min.           | 19min.           |                       |                                                                                                    | Thickness × 1.0 |                              |  |
| SPFC780Y | 780min.  | 365min. | 13min.           | 14min.           |                       |                                                                                                    | Thickness × 3.0 |                              |  |
| SPFC980Y | 980min.  | 490min. | 6min.            | 7min.            |                       |                                                                                                    | Thickness × 4.0 |                              |  |

Remarks: Concerning the applicable thickness of the elongation of SPFC780Y and SPFC980Y, 0.6 mm or over to and excl. 1.0 mm and 1.0 mm or over up to and incl. 2.3 mm shall be respectively shifted to 0.8 mm or over to and excl. 1.0 mm and 1.0 mm or over up to and incl. 2.0 mm.

## (2) Automobile Structure Steel with High Strength Dual-phase (780/ 980 N/mm² class)

| Symbol      | Tension Test  |                 |                        |              |                                    |  |  |  |  |
|-------------|---------------|-----------------|------------------------|--------------|------------------------------------|--|--|--|--|
| of<br>Grade | Thickness (t) | Width (w)<br>mm | Tensile Strength N/mm² | Elongation % | Test Piece                         |  |  |  |  |
| SPFC780Y    | 0.90~2.00     | 850~1219        | 780min.                | 13min.       | JIS No.5                           |  |  |  |  |
| SPFC980Y    | 0.80~1.80     | 850~1000        | 980min.                | 9min.        | Perpendicular to rolling direction |  |  |  |  |

#### (3) EN 10268-2006 Cold Rolled Steel Flat Products with High Yield Strength for Cold Forming

|             |           |            | ch         | emical co | ompositio | n %        |            |            |                                |                            | Tension Te                       | est <sup>1,2,3,4</sup> |                                    |                               |
|-------------|-----------|------------|------------|-----------|-----------|------------|------------|------------|--------------------------------|----------------------------|----------------------------------|------------------------|------------------------------------|-------------------------------|
| Symbol      |           |            |            |           |           |            |            |            |                                |                            | Elongat                          | ion                    | Plastic                            | Strain                        |
| of<br>Grade | C<br>max. | Si<br>max. | Mn<br>max. | P<br>max. | S<br>max. | Al<br>min. | Ti<br>max. | Nb<br>max. | O.2%<br>Proof<br>Stress<br>MPa | Tensile<br>Strength<br>MPa | Test<br>Piece                    | %<br>min.              | strain ratio min.  r <sub>90</sub> | hardening<br>exponent<br>min. |
| HC220P      | 0.07      | 0.50       | 0.70       | 0.080     | 0.025     | 0.015      | _          |            | 220~<br>270                    | 320~<br>400                |                                  | 32                     | 1.3                                | 0.16                          |
| HC220Y      | 0.01      | 0.30       | 0.90       | 0.080     | 0.025     | 0.010      | 0.12       | _          | 220~<br>270                    | 350~<br>400                |                                  | 34                     | 1.6                                | 0.18                          |
| HC260Y      | 0.01      | 0.30       | 1.60       | 0.100     | 0.025     | 0.010      | 0.12       | _          | 260~<br>320                    | 380~<br>440                | EN                               | 32                     | 1.4                                | 0.17                          |
| HC260LA     | 0.10      | 0.50       | 0.60       | 0.025     | 0.025     | 0.015      | 0.15       | _          | 260~<br>330                    | 350~<br>430                | TYPE 2                           | 26                     | _                                  | _                             |
| HC300LA     | 0.10      | 0.50       | 1.00       | 0.025     | 0.025     | 0.015      | 0.15       | 0.09       | 300~<br>380                    | 380~<br>480                | Perpen-<br>dicular<br>to rolling | 23                     | _                                  | _                             |
| HC340LA     | 0.10      | 0.50       | 1.10       | 0.025     | 0.025     | 0.015      | 0.15       | 0.09       | 340~<br>420                    | 410~<br>510                | direction                        | 21                     | _                                  | _                             |
| HC380LA     | 0.10      | 0.50       | 1.60       | 0.025     | 0.025     | 0.015      | 0.15       | 0.09       | 380~<br>480                    | 440~<br>560                |                                  | 19                     | _                                  | _                             |
| HC420LA     | 0.10      | 0.50       | 1.60       | 0.025     | 0.025     | 0.015      | 0.15       | 0.09       | 420~<br>520                    | 470~<br>590                |                                  | 17                     | _                                  |                               |

#### Remarkss:

- 1. 1MPa=1 N/mm<sup>2</sup>
- 2. The minimum values for  $r_{90}$  and  $n_{90}$  only apply to products of thickness equal to or greater than 0.5 mm.
- 3. When the thickness is less than or equal to 0.7 mm and greater than 0.5 mm, the minimum value for elongation is reduced by 2 units.
- 4. For products with thickness over 2 mm the minimum  $r_{\tiny 90}$  value is reduced by 0.2.

#### (4) SAE J2340 High Strength Automotive Sheet Steel

| Symbol      | Chen   | nical Compositio | n¹ %   | Tension Test <sup>2</sup> |                            |              |                   |  |
|-------------|--------|------------------|--------|---------------------------|----------------------------|--------------|-------------------|--|
| of<br>Grade | C max. | P max.           | S max. | Proof<br>Stress<br>MPa    | Tensile<br>Strength<br>MPa | Elongation % | Test Piece        |  |
| 340X        | 0.13   | 0.060            | 0.015  | 340~440                   | 4 10min.                   | 22min.       | rolling direction |  |
| 420X        | 0.13   | 0.060            | 0.015  | 420~520                   | 490min.                    | 18min.       | rolling direction |  |

#### Remarks:

- 1. The specified minimum for niobium, titanium, or vanadium is 0.005 %.
- $2. \ For thickness \ less \ than \ 2.5 \ mm, \ minimum \ percent \ elongation \ is \ permitted \ to \ be \ 2 \ \% \ less \ than \ the \ value \ shown.$

## (5) CSC Specification

|  |                       |                     |                 | Tensic            | on Test          |                  |                          | Bend test     |                  |                          |  |
|--|-----------------------|---------------------|-----------------|-------------------|------------------|------------------|--------------------------|---------------|------------------|--------------------------|--|
|  | Symbol<br>of<br>Grade | +                   |                 |                   | Elongation %     |                  |                          |               |                  |                          |  |
|  |                       | Tensile<br>Strength | Proof<br>Stress | Thi               | ckness (t) r     | mm               | Test<br>Piece            | Bend<br>Angle | Radius of Inside | Test<br>Piece            |  |
|  |                       | N/mm²               | N/mm²           | 0.55 ≦ t<br>< 1.0 | 1.0 ≦ t<br>≦ 2.0 | 2.0 < t<br>≦ 2.6 | 1 1000                   | Angle         | surface          | T ICCC                   |  |
|  | CSC<br>CF370R         | 370min.             | 205min.         | 33min.            | 34min.           |                  | No.5                     |               |                  | No.3                     |  |
|  | CSC<br>CF390R         | 390min.             | 235min.         | 31min.            | 32min.           |                  | Perpendicular to rolling | 180°          | Flat on itself   | Perpendicular to rolling |  |
|  | CSC<br>CF440R         | 440min.             | 255min.         | _                 | directi — 30min. |                  | direction                |               |                  | direction                |  |

Remark: The bend test shall be carried out on request of the purchaser.

# (6) CSC Specification

|                |                       | Te      | ension Test      |                                                       |               | Bend test                   |                                         |
|----------------|-----------------------|---------|------------------|-------------------------------------------------------|---------------|-----------------------------|-----------------------------------------|
| Symbol         | Tensile               | Proof   | Elongation %     |                                                       |               |                             |                                         |
| Grade          | Grade Strength Stress | Stress  | Thickness (t) mm | Test Piece                                            | Bend<br>Angle | Radius of<br>Inside surface | Test<br>Piece                           |
|                | N/mm² N/mm²           |         | 0.9 ≦ t ≦ 2.0    |                                                       |               |                             |                                         |
| CSC<br>CR500LA | 570~710               | 500~620 | 14min.           | EN Type 2<br>Perpendicular<br>to rolling<br>direction | 180°          | Thickness × 1.0             | No.3 Perpendicular to rolling direction |

# 7.1.3 CSC High Strength Steel Sheets for Strap

| Symbol       |              | Chemi        | cal Comp      | osition %     | ò             |                              | Tension Te   | est                                              | Bend test     |                                |                                                 |  |
|--------------|--------------|--------------|---------------|---------------|---------------|------------------------------|--------------|--------------------------------------------------|---------------|--------------------------------|-------------------------------------------------|--|
| of<br>Grade  | С            | Si           | Mn            | Р             | S             | Tensile<br>Strength<br>N/mm² | Elongation % | Test<br>Piece                                    | Bend<br>Angle | Radius of<br>Inside<br>surface | Test<br>Piece                                   |  |
| CSC<br>HS840 | 0.20<br>max. | 0.50<br>max. | 0.70~<br>1.50 | 0.030<br>max. | 0.030<br>max. | 840<br>min.                  | 6.0<br>min.  | JIS No.9A<br>Parallel to<br>rolling<br>direction | 90°           | Thickness × 1.0                | JIS No.3<br>Parallel to<br>rolling<br>direction |  |

# 7.1.4 CSC Steel Sheets for Special Blanking Use

| Symbol      |                       | Tension Test                       | Hardness |
|-------------|-----------------------|------------------------------------|----------|
| of<br>Grade | Proof<br>Stress N/mm² | Test Piece                         | HRB      |
| CSC CW205YE | 205~245               | No.5 parallel to rolling direction | 50~56    |

#### Remarks:

- 1. Thickness tolerance as per 1/4 JIS G3141 Class A.
- 2. Width tolerance as per JIS G3141 Class A.
- 3. Flatness tolerance as per 1/2 JIS G3141 Class A.

# 7.1.5 CSC Steel Sheets for Fine Blanking Use

| Symbol         | Tension Test           |                          |                  |            |                                    |  |  |  |
|----------------|------------------------|--------------------------|------------------|------------|------------------------------------|--|--|--|
| of             | Tensile Strength N/mm² | Proof                    | Elonga           | Test Piece |                                    |  |  |  |
| Grade          |                        | Stress N/mm <sup>2</sup> | Thickness (t) mm | %          | rest Fiece                         |  |  |  |
|                | 270min.                | 200max.                  | 1.0 ≦ t < 1.6    | 43min.     |                                    |  |  |  |
| CSC<br>CB270TE |                        |                          | 1.6 ≦ t < 2.5    | 44min.     | No.5 Parallel to rolling direction |  |  |  |
|                |                        |                          | 2.5 ≦ t ≦ 3.2    | 45min.     | 3 3                                |  |  |  |

#### Remarkss:

- 1. Thickness tolerance as per 1/4 JIS G3141 Class A.
- 2. Width tolerance as per JIS G3141 Class A.
- 3. Flatness tolerance as per 1/2 JIS G3141 Class A.

# 7.1.6 Cold Rolled Medium Carbon Steel, High Carbon Steel, Alloy Steel and Special Steel Strip

# (1) JIS G3311-2010 Special Steel Strip

| Symbol      |               |               |               |        | Chemica | al Compositio | n%            |               |               |               |
|-------------|---------------|---------------|---------------|--------|---------|---------------|---------------|---------------|---------------|---------------|
| of<br>Grade | С             | Si            | Mn            | P max. | S max.  | Cu max.       | Ni max.       | Cr            | Ni+Cr<br>max. | Мо            |
| S35CM       | 0.32~         | 0.15~<br>0.35 | 0.60~<br>0.90 | 0.030  | 0.035   | 0.30          | 0.20          | 0.20max.      | 0.35          |               |
| S45CM       | 0.42~<br>0.48 | 0.15~<br>0.35 | 0.60~<br>0.90 | 0.030  | 0.035   | 0.30          | 0.20          | 0.20max.      | 0.35          | _             |
| S50CM       | 0.47~<br>0.53 | 0.15~<br>0.35 | 0.60~<br>0.90 | 0.030  | 0.035   | 0.30          | 0.20          | 0.20max.      | 0.35          | _             |
| SK85M       | 0.80~<br>0.90 | 0.10~<br>0.35 | 0.10~<br>0.50 | 0.030  | 0.030   | 0.25          | 0.25          | 0.30max.      | _             | _             |
| SK95M       | 0.90~<br>1.00 | 0.10~<br>0.35 | 0.10~<br>0.50 | 0.030  | 0.030   | 0.25          | 0.25          | 0.30max.      | _             | _             |
| SKS51M      | 0.75~<br>0.85 | 0.35<br>max.  | 0.50<br>max.  | 0.030  | 0.030   | 0.25          | 1.30~<br>2.00 | 0.20~<br>0.50 | _             | _             |
| SCM415M     | 0.13~<br>0.18 | 0.15~<br>0.35 | 0.60~<br>0.90 | 0.030  | 0.030   | 0.30          | 0.25          | 0.90~<br>1.20 | _             | 0.15~<br>0.25 |
| SCM435M     | 0.33~<br>0.38 | 0.15~<br>0.35 | 0.60~<br>0.90 | 0.030  | 0.030   | 0.30          | 0.25          | 0.90~<br>1.20 | _             | 0.15~<br>0.30 |

Remarks: For steel strips and cut-lengths of thicknesses over 4.00 mm or widths 600 mm or over, the thickness tolerance shall be as agreed between the purchaser and the manufacturer.

# (2) SAE J403 / J404 (Medium Carbon Steel, High Carbon Steel and Alloy Steel)

| Symbol |           |           | Cher      | mical Compositio | on %      |           |           |
|--------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|
| Grade  | С         | Si        | Mn        | Р                | S         | Cr        | Мо        |
| 1050   | 0.48~0.55 |           | 0.60~0.90 | 0.030max.        |           |           | _         |
| 1055   | 0.50~0.60 | _         | 0.60~0.90 |                  | 0.050max. | _         |           |
| 1060   | 0.55~0.65 |           | 0.60~0.90 |                  |           |           |           |
| 1065   | 0.60~0.70 |           | 0.60~0.90 |                  |           |           |           |
| 1070   | 0.65~0.75 |           | 0.60~0.90 |                  |           |           |           |
| 1552   | 0.47~0.55 | _         | 1.20~1.50 | 0.030max.        | 0.050max. | _         | _         |
| 4130   | 0.28~0.33 | 0.15~0.35 | 0.40~0.60 | 0.030max.        | 0.040max. | 0.80~1.10 | 0.15~0.25 |
| 4135   | 0.33~0.38 | 0.15~0.35 | 0.70~0.90 | 0.030max.        | 0.040max. | 0.80~1.10 | 0.15~0.25 |

#### (3) ASTM A684-2008 (High Cabon Steel)

| Symbol of | Chemical Composition % |           |           |           |           |  |  |  |  |  |
|-----------|------------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| Grade     | С                      | Si        | Mn        | Р         | S         |  |  |  |  |  |
| 1050      | 0.48~0.55              | 0.15~0.30 | 0.60~0.90 | 0.030max. | 0.035max. |  |  |  |  |  |
| 1065      | 0.60~0.70              | 0.15~0.30 | 0.60~0.90 | 0.030max. | 0.035max. |  |  |  |  |  |
| 1070      | 0.65~0.75              | 0.15~0.30 | 0.60~0.90 | 0.030max. | 0.035max. |  |  |  |  |  |

# 7.1.7 CSC Steel Sheets for Slide Rail Use

| Symbol      | Tensio                   | n Test                                  |               |                          |                          |                 |
|-------------|--------------------------|-----------------------------------------|---------------|--------------------------|--------------------------|-----------------|
| of<br>Grade | Proof<br>Stress<br>N/mm² | Test<br>Piece                           | Bend<br>Angle | Radius of Inside surface | Test Piece               | Hardness<br>HRB |
| CSC SL250Y  | 250~330                  | No.5 Perpendicular to rolling direction | 180°          | Thickness<br>× 1.0       | No.3<br>Perpendicular to | 65~80           |
| CSC SL330Y  | 330~410                  |                                         |               |                          |                          | 72~82           |
| CSC SL420Y  | 420min.                  |                                         |               |                          | rolling direction        | _               |

#### Remarks:

- 1. Thickness tolerance as per 1/2 JIS G3141 Class A.
- 2. Width tolerance as per JIS G3141 Class A.
- 3. Flatness tolerance as per 1/2 JIS G3141 Class A.
- 4. For SL420Y, thickness tolerance as per 1/2 JIS G3135.

# 7.1.8 Decarburized Steel Sheets and Strip for Porcelain Enameling

| Symbol | CI                      | nemical Con | nposition (1) | %               | Tension Test (2) |         |                                          |  |
|--------|-------------------------|-------------|---------------|-----------------|------------------|---------|------------------------------------------|--|
| of     | С                       | Mn          | Р             | S -             | Elonga           | ition % | Test Piece                               |  |
| Grade  |                         | IVIII       |               |                 | Thickness(t) mm  | %       |                                          |  |
|        | 0.008 0.50<br>max. max. |             | 0.04<br>max.  | 0.04<br>max.    | 0.40 ≦ t < 0.60  | 36min.  | No.5<br>Parallel to<br>rolling direction |  |
| SPP    |                         | 0.50        |               |                 | 0.60 ≦ t < 1.00  | 38min.  |                                          |  |
| SPP    |                         | max.        |               |                 | 1.00 ≦ t < 1.60  | 39min.  |                                          |  |
|        |                         |             |               | 1.60 ≦ t < 2.00 | 40min.           |         |                                          |  |

#### Remarks:

- 1. Such elements as Ti, Nb, Zr, V and B may be added. In this case, the content of the elements added shall be reported.
- 2. For steel sheets and strip under 0.60mm in thickness, the tension test shall normally be omitted when not requested by the purchaser.

# 7.1.9 CSC Low-carbon High Manganese Wear-resisting Steel

| Symbol of Grade | Thickness (t)mm | Width (w)mm    | Hardness HRB |  |
|-----------------|-----------------|----------------|--------------|--|
| CSC CC1513      | 1.61 ≦ t ≦ 1.97 | 850 ≦ w ≦ 1250 | 65~75        |  |

#### Remarks:

- 1. Thickness tolerance as per ASTM A568.
- 2. Flatness tolerance as per ASTM A568.

# 7.1.10 CSC High Strength Manganese-boron Steel

| Symbol      |               |               | Tension Test  |               |               |               |                   |              |                                        |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------------|--------------|----------------------------------------|
| of<br>Grade | С             | Si            | Mn            | Р             | S             | Al            | В                 | Elongation % | Test piece                             |
| CSC CC15B22 | 0.19~<br>0.25 | 0.15~<br>0.25 | 1.05~<br>1.35 | 0.020<br>max. | 0.010<br>max. | 0.075<br>max. | 0.0005~<br>0.0045 | 26<br>min.   | JIS No.5 Parallel to rolling direction |

Remark: Thickness tolerance as per 1/2 JIS G3141 Class A.

# 7.1.11 CSC Steel Sheets for Relay Use

| Symbol of Grade | Thickness (t)   | Width (w)<br>mm | Hardness HRB | Tension Test |                                              |  |
|-----------------|-----------------|-----------------|--------------|--------------|----------------------------------------------|--|
| Symbol of Grade | mm              |                 | Haruness HND | Elongation % | Test piece                                   |  |
| CSC CM-1        | 0.40 ≦ t ≦ 3.20 | 850 ≦ w ≦ 1250  | 35min.       | 37min.       | JIS No.5<br>Parallel to<br>rolling direction |  |

#### Remarks:

- 1. Thickness tolerance as per 1/2 JIS G3141 Class A.
- 2. Thickness of 2.01 mm or more of the steel sheet are subject to the coil breaks.

# 7.1.12 CSC Low-carbon Bearing Retainer Steel

| Symbol      | (            | Chemical Co  | mposition 9   | 6             | Tension Test    |                          |                                    |                 |
|-------------|--------------|--------------|---------------|---------------|-----------------|--------------------------|------------------------------------|-----------------|
| of<br>Grade | С            | Mn           | Р             | S             | Thickness (t)   | Proof<br>Stress<br>N/mm² | Test Piece                         | Hardness<br>HRB |
| CSC CF170YF | 0.15<br>max. | 0.60<br>max. | 0.100<br>max. | 0.050<br>max. | 0.50 ≦ t ≦ 0.80 | 170~230                  | No.5 Parallel to rolling direction | 45~55           |

Remark: Thickness tolerance as per 1/4 JIS G3141 Class A.

# 7.2 Tolerances

# 7.2.1 Thickness Tolerances

# 7.2.1.1 JIS G3141 Thickness Tolerances

unit: mm

| Tolerance Width(w) Thickness(t) | w < 630 | 630 ≤ w<1000 | 1000 ≦ w<1250 | 1250 ≦ w<1630 | w ≧ 1630 |
|---------------------------------|---------|--------------|---------------|---------------|----------|
| t < 0.25                        | ±0.03   | ±0.03        | ±0.03         | _             | _        |
| 0.25 ≤ t < 0.40                 | ±0.04   | ±0.04        | ±0.04         | _             | _        |
| 0.40 ≤ t < 0.60                 | ±0.05   | ±0.05        | ±0.05         | ±0.06         | _        |
| 0.60 ≤ t < 0.80                 | ±0.06   | ±0.06        | ±0.06         | ±0.06         | ±0.07    |
| 0.80 ≦ t < 1.00                 | ±0.06   | ±0.06        | ±0.07         | ±0.08         | ±0.09    |
| 1.00 ≦ t < 1.25                 | ±0.07   | ±0.07        | ±0.08         | ±0.09         | ±0.11    |
| 1.25 ≦ t < 1.60                 | ±0.08   | ±0.09        | ±0.10         | ±0.11         | ±0.13    |
| 1.60 ≤ t < 2.00                 | ±0.10   | ±0.11        | ±0.12         | ±0.13         | ±0.15    |
| 2.00 ≤ t < 2.50                 | ±0.12   | ±0.13        | ±0.14         | ±0.15         | ±0.17    |
| 2.50 ≤ t < 3.15                 | ±0.14   | ±0.15        | ±0.16         | ±0.17         | ±0.20    |
| 3.15 ≦ t                        | ±0.16   | ±0.17        | ±0.19         | ±0.20         | _        |

 $Remark : Thickness shall be measured at any point 15 \, mm \, or \, more \, apart \, from \, both \, edges.$ 

# 7.2.1.2 JIS G3135 Thickness Tolerances

unit: mm

| Applicable division according to tensile strength | Width (w) Thickness (t) | w < 630 | 630 ≦ w<br><1000 | 1000 ≦ w<br><1250 | 1250 ≦ w<br><1600 | 1600 ≦ w |
|---------------------------------------------------|-------------------------|---------|------------------|-------------------|-------------------|----------|
|                                                   | 0.60 ≦ t < 0.80         | ±0.06   | ±0.06            | ±0.06             | ±0.07             | ±0.08    |
| Steel sheets of                                   | 0.80 ≦ t < 1.00         | ±0.07   | ±0.07            | ±0.08             | ±0.09             | ±0.10    |
| under 780 N/mm²                                   | 1.00 ≦ t < 1.25         | ±0.08   | ±0.08            | ±0.09             | ±0.10             | ±0.12    |
| in specification lower limit of                   | 1.25 ≦ t < 1.60         | ±0.09   | ±0.10            | ±0.11             | ±0.12             | ±0.14    |
| tensile strength                                  | 1.60 ≦ t < 2.00         | ±0.10   | ±0.11            | ±0.12             | ±0.14             | ±0.16    |
|                                                   | 2.00 ≦ t ≦ 2.30         | ±0.12   | ±0.13            | ±0.14             | ±0.16             | ±0.18    |
| Steel sheets of                                   | 0.80 ≦ t < 1.00         |         | ±0.09            |                   | ±0.10             | _        |
| 780 N/mm² min.                                    | 1.00 ≦ t < 1.25         |         | ±0.10            |                   | ±0.12             | _        |
| in specification lower limit of                   | 1.25 ≦ t < 1.60         |         | ±0.12            |                   | ±0.15             | _        |
| tensile strength                                  | 1.60 ≦ t ≦ 2.00         |         | ±0.14            |                   | ±0.16             |          |

Remarks: 1. The measuring position of thickness shall be an arbitrary point 25 mm min. apart from the edge for a mill edge and an arbitrary point 15 mm min. apart from the edge for a cut edge.

<sup>2.</sup> This table shall not be applied to the abnormal parts at both ends of steel strip in coil.

#### 7.2.1.3 CSC CF370R/390R/440R Thickness Tolerances

unit: mm

| Width (w) Thickness (t) | 850 ≦ w < 1000 | 1000 ≦ w < 1250 | 1250 ≦ w |
|-------------------------|----------------|-----------------|----------|
| $0.55 \le t < 0.60$     | ±0.02          | ±0.02           | ±0.03    |
| $0.60 \le t < 0.80$     | ±0.03          | ±0.03           | ±0.03    |
| 0.80 ≦ t < 1.00         | ±0.03          | ±0.04           | ±0.04    |
| 1.00 ≦ t < 1.25         | ±0.04          | ±0.04           | ±0.05    |
| 1.25 ≦ t < 1.60         | ±0.05          | ±0.05           | ±0.06    |
| 1.60 ≦ t ≦ 2.00         | ±0.05          | ±0.06           | ±0.07    |

Remark: Thickness shall be measured at any point 15 mm or more apart from both edges.

# 7.2.1.4 ASTM A568 Thickness Tolerances (All Designations) (Specified Nominal Thickness Tolerances)

unit: in.(mm)

| Thickness (t)                         | 15 (381) < w ≦ 72 (1829) |
|---------------------------------------|--------------------------|
| $0.014 (0.36) \le t \le 0.019 (0.48)$ | ± 0.0010 (0.025)         |
| $0.019 (0.48) < t \le 0.039 (0.99)$   | ± 0.0015 (0.038)         |
| $0.039 (0.99) < t \le 0.057 (1.45)$   | ± 0.0020 (0.050)         |
| $0.057 (1.45) < t \le 0.071 (1.80)$   | ± 0.0025 (0.063)         |
| $0.071 (1.80) < t \le 0.098 (2.49)$   | ± 0.0025 (0.063)         |
| $0.098 (2.49) < t \le 0.142 (3.60)$   | ± 0.0030 (0.076)         |

Remark: Thickness shall be measured at any point 1 inch (25.4 mm) or more apart from both edges.

# $7.2.1.5~ASTM~A568M~Thickness~Tolerances~(~All~Designations~)~(Specified~Nominal~Thickness~Tolerances)\\ ~~unit:mm$

| Thickness (t)         | 780 ≦ w ≦ 1829 |
|-----------------------|----------------|
| $0.20 \le t \le 0.40$ | ± 0.025        |
| 0.40 < t ≦ 1.00       | ± 0.040        |
| 1.00 < t ≦ 1.20       | ± 0.050        |
| 1.20 < t ≦ 2.50       | ± 0.060        |
| 2.50 < t ≦ 3.00       | ± 0.075        |

 $\label{lem:Remark:Thickness shall be measured at any point 25 mm or more apart from both edges.$ 

# 7.2.1.6 EN 10131 EN 10131 Thickness Tolerances(Minimum Yield Strength Re < 260 MPa)

unit: mm

| Tolerance Width(w) Thickness(t) | w ≦ 1200 | 1200 < w ≦ 1500 | 1500 < w |
|---------------------------------|----------|-----------------|----------|
| $0.35 \le t \le 0.40$           | ± 0.03   | ± 0.04          | ± 0.05   |
| $0.40 < t \le 0.60$             | ± 0.03   | ± 0.04          | ± 0.05   |
| $0.60 < t \le 0.80$             | ± 0.04   | ± 0.05          | ± 0.06   |
| 0.80 < t ≦ 1.00                 | ± 0.05   | ± 0.06          | ± 0.07   |
| 1.00 < t ≦ 1.20                 | ± 0.06   | ± 0.07          | ± 0.08   |
| 1.20 < t ≦ 1.60                 | ± 0.08   | ± 0.09          | ± 0.10   |
| 1.60 < t ≤ 2.00                 | ± 0.10   | ± 0.11          | ± 0.12   |
| 2.00 < t ≤ 2.50                 | ± 0.12   | ± 0.13          | ± 0.14   |
| 2.50 < t ≦ 3.00                 | ± 0.15   | ± 0.15          | ± 0.16   |

# 7.2.1.7 EN 10131 Thickness Tolerances (Minimum Yield Strength 260 $\leq$ Re < 340 MPa )

unit: mm

| Tolerance Width(w) Thickness(t) | w ≦ 1200 | 1200 < w ≦ 1500 | 1500 < w |
|---------------------------------|----------|-----------------|----------|
| 0.35 ≤ t ≤ 0.40                 | ± 0.04   | ± 0.05          | ± 0.06   |
| 0.40 < t ≤ 0.60                 | ± 0.04   | ± 0.05          | ± 0.06   |
| 0.60 < t ≤ 0.80                 | ± 0.05   | ± 0.06          | ± 0.07   |
| 0.80 < t ≦ 1.00                 | ± 0.06   | ± 0.07          | ± 0.08   |
| 1.00 < t ≦ 1.20                 | ± 0.07   | ± 0.08          | ± 0.10   |
| 1.20 < t ≦ 1.60                 | ± 0.09   | ± 0.11          | ± 0.12   |
| 1.60 < t ≦ 2.00                 | ± 0.12   | ± 0.13          | ± 0.14   |
| 2.00 < t ≤ 2.50                 | ± 0.14   | ± 0.15          | ± 0.16   |
| 2.50 < t ≦ 3.00                 | ± 0.17   | ± 0.18          | ± 0.18   |

# 7.2.1.8 EN 10131 Thickness Tolerances (Minimum Yield Strength 340 $\leq$ Re $\leq$ 420 MPa)

unit: mm

| Tolerance Width (w) Thickness (t) | w ≦ 1200 | 1200 < w ≦ 1500 | 1500 < w |
|-----------------------------------|----------|-----------------|----------|
| 0.35 ≤ t ≤ 0.40                   | ± 0.04   | ± 0.05          | ± 0.06   |
| 0.40 < t ≤ 0.60                   | ± 0.04   | ± 0.05          | ± 0.06   |
| $0.60 < t \le 0.80$               | ± 0.05   | ± 0.06          | ± 0.07   |
| 0.80 < t ≦ 1.00                   | ± 0.06   | ± 0.07          | ± 0.08   |
| 1.00 < t ≦ 1.20                   | ± 0.07   | ± 0.08          | ± 0.10   |
| 1.20 < t ≦ 1.60                   | ± 0.09   | ± 0.11          | ± 0.12   |
| 1.60 < t ≦ 2.00                   | ± 0.12   | ± 0.13          | ± 0.14   |
| 2.00 < t ≦ 2.50                   | ± 0.14   | ± 0.15          | ± 0.16   |
| 2.50 < t ≤ 3.00                   | ± 0.17   | ± 0.18          | ± 0.18   |

# 7.2.2 Width Tolerances

#### 7.2.2.1 JIS G3141 Width Tolerances

unit: mm

| Width (w)  | Class A |       | Class B |       |
|------------|---------|-------|---------|-------|
| vviati (w) | Upper   | Lower | Upper   | Lower |
| w < 1250   | 7       | 0     | 3       | 0     |
| w ≧ 1250   | 10      | 0     | 4       | 0     |

Remark: Class B generally applies to the re-cutting or precise cutting practice. Unless specified by the customer, class A is to be applied.

# 7.2.2.2 Width Tolerances of JIS G3135 and CSC CF370R/390R/440R

unit: mm

| NA E alula ( ) | Tolerances |       |  |
|----------------|------------|-------|--|
| Width (w)      | Upper      | Lower |  |
| w < 1250       | 7          | 0     |  |
| w ≧ 1250       | 10         | 0     |  |

# 7.2.2.3 ASTM A568 Width Tolerances (All Designations) (Specified Nominal Thickness Tolerances) unit: in.(mm)

| VA(Lathbar ()             | Tolerances |       |  |
|---------------------------|------------|-------|--|
| Width (w)                 | Upper      | Lower |  |
| 30 (762) < w ≤ 48 (1219)  | 3/16 (4.7) | 0     |  |
| 48 (1219) < w ≤ 60 (1524) | 1/4 (6.3)  | 0     |  |
| 60 (1524) < w ≤ 80 (2032) | 5/16 (7.9) | 0     |  |

# 7.2.2.4 ASTM A568M Width Tolerances(All Designations)(Specified Nominal Thickness Tolerances)

unit: mm

| MEdillo ( )     | Tolerances |       |  |
|-----------------|------------|-------|--|
| Width (w)       | Upper      | Lower |  |
| 850 < w ≦ 1200  | 5          | 0     |  |
| 1200 < w ≦ 1500 | 6          | 0     |  |
| 1500 < w ≦ 1800 | 8          | 0     |  |
| 1800 < w        | 10         | 0     |  |

# 7.2.2.5 EN 10131 Width Tolerances

unit: mm

| AAP-III.        | Tolera | ances |
|-----------------|--------|-------|
| Width (w)       | Upper  | Lower |
| w ≦ 1200        | 4      | 0     |
| 1200 < w ≦ 1500 | 5      | 0     |
| 1500 < w        | 6      | 0     |

# 7.2.3 Flatness Tolerances

#### 7.2.3.1 JIS G3141 Flatness Tolerances

unit: mm

| Classification Flatness (max.) |             | Class A      |                  | Class B     |              |                  |  |
|--------------------------------|-------------|--------------|------------------|-------------|--------------|------------------|--|
| Width (w)                      | Bow<br>Wave | Edge<br>Wave | Center<br>Buckle | Bow<br>Wave | Edge<br>Wave | Center<br>Buckle |  |
| w < 1000                       | 12          | 8            | 6                | 2           | 2            | 2                |  |
| 1000 ≦ w < 1250                | 15          | 9            | 8                | 3           | 2            | 2                |  |
| 1250 ≦ w < 1600                | 15          | 11           | 8                | 4           | 3            | 2                |  |
| 1600 ≦ w                       | 20          | 13           | 9                | 5           | 4            | 2                |  |

Remarks: 1. Class B generally applies to the steel sheets of stretcher-leveled steel sheet.

#### 7.2.3.2 JIS G3135 Flatness Tolerances

unit: mm

| Flatness (max.) Classification | Bow Wave |    | Edge Wave |    |    | Center Buckle |    |    |    |
|--------------------------------|----------|----|-----------|----|----|---------------|----|----|----|
| Width(w)                       | 1        | 2  | 3         | 1  | 2  | 3             | 1  | 2  | 3  |
| w < 1000                       | 12       | 16 | 18        | 8  | 11 | 12            | 6  | 8  | 9  |
| 1000 ≦ w < 1250                | 15       | 19 | 21        | 10 | 12 | 13            | 8  | 10 | 11 |
| 1250 ≦ w < 1600                | 15       | 19 | 21        | 12 | 14 | 15            | 9  | 11 | 12 |
| 1600 ≦ w                       | 20       | -  | -         | 14 | -  | -             | 10 | -  | -  |

Remarks: 1. Grade 1 to 3 shall respectively be applied to the steel sheet of which the lower limit specification value of tensile strength is under 780 N/mm², 780 N/mm² and 980 N/mm².

#### 7.2.3.3 Flatness Tolerances for CSC CF370R/390R/440R

The flatness tolerances for 0.79mm and under in thickness shall conform to table A of JIS G3141, and for 0.80mm and over in thickness shall conform to 1/2 of table A of JIS G3141.

<sup>2.</sup> Class A applies to the normally refined steel sheets.

<sup>2.</sup> The value of flatness shall, as a rule, be measured by placing the steel sheet on a surface plate. It shall be obtained by subtracting nominal thickness of steel sheet from the maximum value of strain and be applied to the upper side surface of steel sheet.

7.2.3.4 ASTM A568 Flatness Tolerances(All Designations)(Specified Nominal Thickness Tolerances) unit: in. (mm)

| Width Thickness(t) | Specified Yield Point (w) | Under 45ksi<br>(Under 310 MPa) | 45 to 50 ksi<br>(310 to 345 MPa) |
|--------------------|---------------------------|--------------------------------|----------------------------------|
|                    | w ≦ 36 (914)              | 3/8 ( 9.5)max.                 | 3/4 (19.1)max.                   |
| t ≤ 0.044(1.12)    | 36 (914) < w ≤ 60 (1524)  | 5/8 (15.9)max.                 | 1 1/8 (28.6)max.                 |
|                    | 60 (1524) < w             | 7/8 (22.2)max.                 | 1 1/2 (38.1)max.                 |
|                    | w ≦ 36 (914)              | 1/4 ( 6.4)max.                 | 3/4 (19.1)max.                   |
| 0.044(1.12) < t    | 36 (914) < w ≤ 60 (1524)  | 3/8 ( 9.5)max.                 | 3/4 (19.1)max.                   |
|                    | 60 (1524) < w ≦ 72 (1829) | 5/8 (15.9)max.                 | 1 1/8 (28.6)max.                 |

Remarks: Tolerances for high-strength, low-alloy steel with specified minimum yield point in excess of 50 ksi are subject to negotiation.

7.2.3.5 ASTM A568M Flatness Tolerances(All Designations)(Specified Nominal Thickness Tolerances) unit: mm

| Width Thickness(t) | Specified Yield Point (w) | Under 310 MPa | 310 to 345 MPa |  |  |
|--------------------|---------------------------|---------------|----------------|--|--|
|                    | w ≦ 900                   | 10max.        | 20max.         |  |  |
| t ≦ 1.0            | 900 < w ≦ 1500            | 15max.        | 30max.         |  |  |
|                    | 1500 < w                  | 20max.        | 40max.         |  |  |
|                    | w ≦ 900                   | 8max.         | 20max.         |  |  |
| 1.0 < t            | 900 < w ≦ 1500            | 10max.        | 20max.         |  |  |
|                    | 1500 < w ≦ 1800           | 15max.        | 30max.         |  |  |

Remarks: Tolerances for high-strength, low-alloy steel with specified minimum yield point in excess of 340 MPa are subject to negotiation.

# 7.2.4 Camber Tolerances

# 7.2.4.1 JIS G3141 Camber Tolerances

unit: mm

| Width (w) | Tolerance (max.)                  |
|-----------|-----------------------------------|
| 630 ≦ w   | 2 (Any portion of 2000 in length) |

# 7.2.4.2 Camber Tolerances of JIS G3135 and CSC CF370R/390R/440R

unit: mm

| Lower limit specification value of tensile strength | Width (w) | Tolerances (max.)                 |
|-----------------------------------------------------|-----------|-----------------------------------|
| Under 780 N/mm²                                     | w ≧ 630   | 2 per an arbitrary length of 2000 |
| 780 N/mm² or over                                   | w ≧ 630   | 3 per an arbitrary length of 2000 |

# 7.2.4.3 ASTM A568 Camber Tolerances

| Production | Tolerance ( max. )                      |
|------------|-----------------------------------------|
| Coils      | 1/4 inch(6.35mm) in any 8 ft ( 2438 mm) |

# 7.2.4.4 ASTM A568M (Metric) Camber Tolerances

unit: mm

| Production | Tolerance (max.) |
|------------|------------------|
| Coils      | 5.0 in any 2000  |

# 7.3 Classification of Quality

| Classification         | Quality                                                                    | Common Specification                                                            | Typical Applications                                                                                                           |  |  |
|------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        | Commercial Quality (CQ)                                                    | JIS G3141 SPCC JFS A2001 JSC270C ASTM A1008 CS EN10130 DC01 CSC CB270TE         | Furniture Refrigerator Case, Piping, Steel Drum, Tool Box, Computer Case, Cabinet Lock, Electronic Parts, Wheel Rim & Cap etc. |  |  |
| For Forming            | Drawing Quality (DQ)                                                       | JIS G3141 SPCD<br>JFS A2001 JSC270D<br>ASTM A1008 DS<br>EN 10130 DC03           | Motor Housing Fender,<br>Chassis, Lamp Shell, Door<br>Inner, & Outer for Automobile,<br>Roaster Oven, etc.                     |  |  |
| Fabrication            | Deep Drawing<br>Quality (DDQ)                                              | JIS G3141 SPCE/SPCF<br>JFS A2001 JSC270E<br>ASTM A1008 DDS<br>EN 10130 DC04     | Fuel Tank, Oil Can, Fender, Bumper, Trunk Lid Inner, Door Inner for Automobile, Front Lamp Set, Lighting Fixture, etc.         |  |  |
|                        | Extra Deep Drawing<br>Quality (EDDQ)                                       | JIS G3141 SPCG<br>JFS A2001 JSC270F<br>ASTM A1008 EDDS<br>EN 10130 DC05         | Oil Can, Fuel Tank<br>for Automobile, Lid<br>inner & Door inner<br>for Automobile, etc.                                        |  |  |
|                        | Structural Quality (SS)                                                    | ASTM A1008 SS Grade XX                                                          | Frame, Automobile Body,<br>Roofing Deck, etc                                                                                   |  |  |
| For Structural Use     | High Strength Sheet<br>With Improved Formability<br>for Automobile Quality | JIS G3135 SPFCXXX<br>JFS A2001 JSCXXX<br>EN 10268 HCXXX<br>CSC CF370R/390R/440R | Fender Bumper, Luggage<br>Carrier, Automobile Frame,<br>Bonnet and Trunk, etc.                                                 |  |  |
|                        | Bicycle parts                                                              | CSC CC1513                                                                      | Chain Wheel for Bicycle                                                                                                        |  |  |
| For Hardware, Tool Use | Special Steel Strip                                                        | JIS G3311<br>ASTM A684<br>SAE J404                                              | Chain Plate, Hand Tool,<br>Saw Plate, Golf Club                                                                                |  |  |

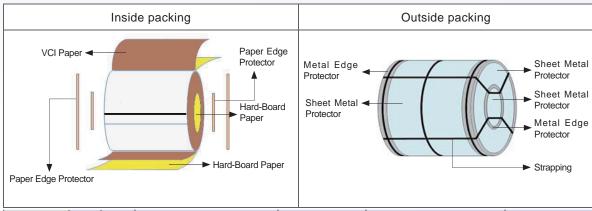
# 8.1 Unit mass

| Product Type                               | Minimum Unit mass |
|--------------------------------------------|-------------------|
| CR Coil<br>(Carbon Steel)                  | 3 t / Coil        |
| CR Coil<br>(High Strength Low Alloy Steel) | 3 t / Coil        |

# 8.2 Available Sizes

unit: mm

| Product Type                                  | Thickness | Width    | Coil Inside<br>Diameter |  |
|-----------------------------------------------|-----------|----------|-------------------------|--|
|                                               | 0.20~0.29 | 850~1000 |                         |  |
|                                               | 0.30~0.34 | 850~1100 |                         |  |
|                                               | 0.35~0.40 | 850~1219 |                         |  |
|                                               | 0.41~0.49 | 780~1250 |                         |  |
| CR Coil                                       | 0.50~0.59 | 780~1410 |                         |  |
| (Carbon Steel)                                | 0.60~0.69 | 780~1630 |                         |  |
|                                               | 0.70~0.79 | 780~1776 | 508 or 610              |  |
|                                               | 0.80~1.60 | 780~1830 |                         |  |
|                                               | 1.61~2.00 | 780~1676 |                         |  |
|                                               | 2.01~3.20 | 780~1250 |                         |  |
| CR Coil<br>(High Strength Low<br>Alloy Steel) | 0.40~2.00 | 850~1520 |                         |  |
| CR Coil<br>(Special Steel Strip)              | 0.40~2.50 | 850~1000 |                         |  |


Remark: Above as a reference only.



# 9.1 Marking for cold rolled steel



# 9.2 Packing for cold rolled steel



| Material                              | erial Paper VCI |       | Hard-Board Paper           |              | Paper<br>Edge Protector |                     | Sheet Metal<br>Protector |                            |              | Metal<br>Edge Protector |                     |                    |
|---------------------------------------|-----------------|-------|----------------------------|--------------|-------------------------|---------------------|--------------------------|----------------------------|--------------|-------------------------|---------------------|--------------------|
| Product                               | Pipe            | Paper | circumferential<br>surface | side<br>wall | inner<br>surface        | outside<br>diameter | inside<br>diameter       | circumferential<br>surface | side<br>wall | inner<br>surface        | outside<br>diameter | inside<br>diameter |
| Cold Rolled<br>Coil                   |                 | V     | V                          |              |                         | V                   | V                        | V                          | V            | V                       | V                   | V                  |
| Non-Oiled<br>Cold Rolled<br>Coil      |                 | V     | V                          |              | V                       | V                   | V                        | V                          | V            | V                       | V                   | V                  |
| Thin Cold Rolled Coil                 | V               | V     | V                          |              |                         | V                   | V                        | V                          | V            | V                       | V                   | V                  |
| Non-Oiled<br>Thin Cold<br>rolled Coil | V               | V     | V                          |              | V                       | V                   | V                        | V                          | V            | V                       | V                   | V                  |



# 10.1 Rust Prevention

If antirust treatment is not properly performed for the cold-rolled steel coils and sheets, it will be easy to rust the steel surface. Therefore, the coils have to be spread with proper rust preventive oil, and the coils are packed completely to protect them before shipping. However, the steel sheets and coils are easy to rust owing to the environmental factors during their storage and use. Especially the condensation problems are easy to occur when the coil storage is in an environment of high humidity and high/low temperature with rapid changes. Therefore, it should particularly pay attention to the prevention of condensation and drain water in advance. Besides, since the dust or acidic substance in the atmosphere are also easy to rust the surface of steel coils or sheets, such problems in the storage or processing must be eliminated for keeping good surface quality.

# 10.2 Stretcher strain and Aging

There are solid solution Carbon and Nitrogen in the low carbon steels. If they are not treated properly, the stretcher strain marks will be occurred in the process. Therefore, the temper rolling process will be carried out appropriately on these products to eliminate the extension of yield point. However, the extension of yield point may appear again with the longer period of storage as we called the aging problem. Aging is mainly related to solid solution Carbon \( \text{storing} \) temperature and time. The "first in, first out (FIFO)" management to use these grades of steel is recommended as soon as possible in order to avoid the aging problems

# 10.3 Painting

The painting is one of the common ways to apply for further protecting the cold-rolled products, or enhancing their beauty and function. Not only the paint itself but also the painting pre-treatment is important factor to influence the coating performance. The main factors resulting in poor painting are:

- (a) Insufficient clean: The residual oil and contaminant are often seen on the steel surfaces. These foreign matters may cause the paint to be unable to bond to the substrate surfaces, and may result in declining to fail the adhesion of film. It is better to understand the rust preventive oil, lubricants and other characteristics, proper choosing the way of cleaning and cleaning agents, paying more attention to storage conditions and painting operation environment for helping to improve the insufficient clean.
- (b) Unsuitable chemical treatment: If the passivation film of chemical treatment is not sufficient or uneven, once outside corrosion factors are contacted with metal, the reactive metal is very easy to oxidize. Then oxide will thoroughly destroy the adhesion of primer paint to the steel surface. Moreover, if there are loose passivation films and coarse crystals or the residue contamination on the chemical treatment liquid, it will also cause the deficiency of the film adhesion. It is better to understand the reaction properties of the chemical treatment liquid, paying more attention on the differences between different cold-rolled steel sheet surfaces, properly adjusting the treatment



liquid concentration, temperature and time, as well as emphasizing on the clean of the treated surface.

(c) Improper paint: The environment and the end-use of products should be considered in the selection of paint, and the appropriate painting procedure should be adopted to ensure that the treated substrate surfaces are sufficiently wetted, are compatible with the paint, and have the ability to resist the environmental corrosion factors.

# 10.4 Electroplating

Electroplating is covering the cold-rolled steel sheets with a layer of metal or alloy by the principle of electrolysis, and the finishing products will have decorative metallic color and property. After electroplated, the appearance of the electroplated object is related to the current density. In the operational current density range, when the current density is smaller, the electroplated object will be more beautiful. Oppositely, there will be some uneven shapes. Generally, the electroplating bath is acidic that can dissolve the coating layer of Cathode. When the current density is too small, as a result of the dissolution of the acidic bath, the metal of coating layer will show the appearance of loose and matt. The contaminated water generated by electroplating process is an important source of water pollution, which is needed to concentrate on sewage treatment. The common electroplating is zinc-coated \cdot copper-coated \cdot nickel-coated \cdot chrome-coated. The main factors resulting in poor electroplating are:

- (a) Uneven coated layer: To obtain a uniform coated method is the well composition of coating bath. The reasonable operation makes the surface activity to be uniform. The reasonable hanging of the coated pieces makes the best current to be distributed uniformly. The current distribution can be improved by the distance and height between the anode and cathode, and by adding to auxiliary electrode \( \) transmission device \( \) insulation barrier etc.
- (b) Coated layer with slag: Since it is due to impurity contamination, and impurity accumulation of long operation, it must always purify the coating bath. The main methods are: To use the filter material to remove solid impurities, to use activated carbon to remove organic matter, and to remove the metallic impurities by the electrolysis. Furthermore, the impurities can be removed by using the chemical methods of replacement \( \cdot \) precipitation \( \cdot \) pH adjustment and others.
- (c) Coated layer with poor adhesion: It is due to the poor surface pre-treatment and oil contamination that the coated layer is unable to combine with the substrate. Therefore, it must execute the proper degreasing clean sufficiently.

# 10.5 Welding

- (a) To compare with galvanized steel sheets, there are higher resistance values on cold-rolled steel sheets that only need a small welding current or shorter welding time to obtain sufficient resistance welding heat.
- (b) Because the cold-rolled steel does not have the galvanized layer, there will be no phenomenon of the foreign

matter contaminated with electrodes in the welding process. The electrode durability of the cold-rolled steel sheets is higher than that of the galvanized steel sheets. Therefore, the electrode must be replaced or polished during welding if necessary.

- (c) Although the cold-rolled steel sheets do not have the interference of the galvanized layer, it still needs to consider the correct welding parameters (welding time and welding current) that can obtain the correct welding strength and life of electrode tip.
- (d) The resistance welding process as an example, if you want to weld the cold-rolled steel sheets, please refer to the following table of suggested welding parameters to ensure stable welding quality.

# Suggested welding parameter table

| Thickness<br>of Steel<br>(mm) | Electrode<br>force<br>(kgf) | Electrode<br>Face<br>Diameter<br>( mm ) | Holding time<br>before welding<br>(cyc) | Welding<br>time<br>(cyc) | Welding<br>Current<br>(kA)       | Holding time after welding (cyc) |
|-------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|--------------------------|----------------------------------|----------------------------------|
| 0.30~0.49                     | 170                         | 5                                       | > 30                                    | 7                        | Expulsion of welding current-0.4 | 2                                |
| 0.50~0.69                     | 180                         | 5                                       | > 30                                    | 8                        | Expulsion of welding current-0.4 | 2                                |
| 0.70~0.89                     | 210                         | 6                                       | > 30                                    | 9                        | Expulsion of welding current-0.4 | 2                                |
| 0.90~1.09                     | 230                         | 6                                       | > 30                                    | 10                       | Expulsion of welding current-0.4 | 3                                |
| 1.10~1.29                     | 250                         | 6                                       | > 30                                    | 12                       | Expulsion of welding current-0.4 | 3                                |
| 1.30~1.49                     | 270                         | 6                                       | > 30                                    | 14                       | Expulsion of welding current-0.4 | 3                                |
| 1.50~1.69                     | 300                         | 6                                       | > 30                                    | 16                       | Expulsion of welding current-0.4 | 4                                |
| 1.70~1.89                     | 340                         | 6                                       | > 30                                    | 18                       | Expulsion of welding current-0.4 | 4                                |
| 1.90~2.09                     | 380                         | 6 or 8                                  | > 30                                    | 20                       | Expulsion of welding current-0.4 | 4                                |
| 2.10~2.29                     | 420                         | 6 or 8                                  | > 30                                    | 24                       | Expulsion of welding current-0.4 | 6                                |
| 2.30~2.49                     | 450                         | 8                                       | > 30                                    | 26                       | Expulsion of welding current-0.4 | 6                                |

| (             | )                |
|---------------|------------------|
| C             | )                |
| $\geq$        | 7                |
| <             |                  |
| П             | ٦                |
| 又             | J                |
| S             | )                |
| $\overline{}$ | -                |
|               |                  |
| $\subseteq$   | )                |
|               | )                |
|               | ) - 1            |
|               | )<br>-<br>-      |
|               | )<br>-<br>+<br>- |
|               |                  |
|               | )                |

|        | ft       | inch    | mm    | m      |
|--------|----------|---------|-------|--------|
| Longth | 1        | 12      | 304.8 | 0.3048 |
| Length | 0.08333  | 1       | 25.4  | 0.0254 |
|        | 0.003281 | 0.03937 | 1     | 0.001  |

| Mass | 1kg = 2.20462 lb |
|------|------------------|
|      |                  |

| Force | 1kgf = 9.80665 N |
|-------|------------------|
|       |                  |

|        | ksi ( = 1000psi ) | psi     | kgf/mm²                 | N/mm²(=MPa)              |
|--------|-------------------|---------|-------------------------|--------------------------|
|        | 1                 | 1000    | 0.70307                 | 6.89476                  |
| Stress | 0.001             | 1       | 7.0307×10 <sup>-4</sup> | 6.89476×10 <sup>-3</sup> |
|        | 1.42233           | 1422.33 | 1                       | 9.80665                  |
|        | 0.145038          | 145.038 | 0.101972                | 1                        |

|          | ft-lbf   | kgf-m    | N-m (=Joule) |  |
|----------|----------|----------|--------------|--|
| Absorbed | 1        | 0.138255 | 1.35582      |  |
| Energy   | 7.23301  | 1        | 9.80665      |  |
|          | 0.737562 | 0.101972 | 1            |  |

# Conversion Table from HR30T to HRB

| HR30T | Converted<br>HRB | HR30T | Converted<br>HRB | HR30T | Converted<br>HRB | HR30T | Converted<br>HRB |
|-------|------------------|-------|------------------|-------|------------------|-------|------------------|
| 35.0  | 28.1             | 47.0  | 46.0             | 59.0  | 63.9             | 71.0  | 81.9             |
| 36.0  | 29.6             | 48.0  | 47.5             | 60.0  | 65.4             | 72.0  | 83.4             |
| 37.0  | 31.1             | 49.0  | 49.0             | 61.0  | 66.9             | 73.0  | 84.9             |
| 38.0  | 32.5             | 50.0  | 50.5             | 62.0  | 68.4             | 74.0  | 86.4             |
| 39.0  | 34.0             | 51.0  | 52.0             | 63.0  | 69.9             | 75.0  | 87.9             |
| 40.0  | 35.5             | 52.0  | 53.5             | 64.0  | 71.4             | 76.0  | 89.4             |
| 41.0  | 37.0             | 53.0  | 55.0             | 65.0  | 72.9             | 77.0  | 90.8             |
| 42.0  | 38.5             | 54.0  | 56.5             | 66.0  | 74.4             | 78.0  | 92.3             |
| 43.0  | 40.0             | 55.0  | 58.0             | 67.0  | 75.9             | 79.0  | 93.8             |
| 44.0  | 41.5             | 56.0  | 59.5             | 68.0  | 77.4             | 80.0  | 95.3             |
| 45.0  | 43.0             | 57.0  | 60.9             | 69.0  | 78.9             | 81.0  | 96.8             |
| 46.0  | 44.5             | 58.0  | 62.4             | 70.0  | 80.4             | 82.0  | 98.3             |

Note: This conversion table shall be in accordance with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation.

# Conversion Table from HR15T to HRB

| HR15T | Converted<br>HRB | HR15T | Converted<br>HRB | HR15T | Converted<br>HRB | HR15T | Converted<br>HRB |
|-------|------------------|-------|------------------|-------|------------------|-------|------------------|
| 70.0  | 28.8             | 76.0  | 47.3             | 82.0  | 65.8             | 88.0  | 84.3             |
| 70.5  | 30.3             | 76.5  | 48.8             | 82.5  | 67.3             | 88.5  | 85.8             |
| 71.0  | 31.9             | 77.0  | 50.4             | 83.0  | 68.8             | 89.0  | 87.3             |
| 71.5  | 33.4             | 77.5  | 51.9             | 83.5  | 70.4             | 89.5  | 88.9             |
| 72.0  | 35.0             | 78.0  | 53.4             | 84.0  | 71.9             | 90.0  | 90.4             |
| 72.5  | 36.5             | 78.5  | 55.4             | 84.5  | 73.5             | 90.5  | 92.0             |
| 73.0  | 38.0             | 79.0  | 56.5             | 85.0  | 75.0             | 91.0  | 93.5             |
| 73.5  | 39.6             | 79.5  | 58.1             | 85.5  | 76.6             | 91.5  | 95.0             |
| 74.0  | 41.1             | 80.0  | 59.6             | 86.0  | 78.1             | 92.0  | 96.6             |
| 74.5  | 42.7             | 80.5  | 61.1             | 86.5  | 79.6             | 92.5  | 98.1             |
| 75.0  | 44.2             | 81.0  | 62.7             | 87.0  | 81.2             | 93.0  | 99.7             |
| 75.5  | 45.7             | 81.5  | 64.2             | 87.5  | 82.7             |       |                  |

Note: This conversion table shall be in accordance with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation.

# Conversion Table from HV to HRB

| HV  | Converted<br>HRB | HV  | Converted<br>HRB | HV  | Converted<br>HRB | HV  | Converted<br>HRB |
|-----|------------------|-----|------------------|-----|------------------|-----|------------------|
| 85  | 41.0             | 145 | 76.6             | 210 | 93.4             | 330 | _                |
| 90  | 48.0             | 150 | 78.7             | 220 | 95.0             | 340 | (108.0)          |
| 95  | 52.0             | 155 | 79.9             | 230 | 96.7             | 350 | _                |
| 100 | 56.2             | 160 | 81.7             | 240 | 98.1             | 360 | (109.0)          |
| 105 | 59.4             | 165 | 83.1             | 250 | 99.5             | 370 | _                |
| 110 | 62.3             | 170 | 85.0             | 260 | (101.0)          | 380 | (110.0)          |
| 115 | 65.0             | 175 | 86.1             | 270 | (102.0)          |     |                  |
| 120 | 66.7             | 180 | 87.1             | 280 | (103.5)          |     |                  |
| 125 | 69.5             | 185 | 88.8             | 290 | (104.5)          |     |                  |
| 130 | 71.2             | 190 | 89.5             | 300 | (105.5)          |     |                  |
| 135 | 73.2             | 195 | 90.7             | 310 |                  |     |                  |
| 140 | 75.0             | 200 | 91.5             | 320 | (107.0)          |     |                  |

Note: 1. This conversion table shall be in accordance with ASTM E140. Hardness not in the table of ASTM is obtained by interpolation.

<sup>2.</sup> The value in parentheses is out of the scope of HRB and for reference. It may be reported as the round number.

12

# Mild Steel

| Classification | JIS G3141 | JFS A2001 | ASTM A1008 | SAE J2329 | EN 10130 |
|----------------|-----------|-----------|------------|-----------|----------|
| CQ             | SPCC      | JSC270C   | CS         | Gr. 1     | DC01     |
| DQ             | SPCD      | JSC270D   | DS         | Gr.2      | DC03     |
| DDQ            | SPCE      | JSC270E   | DDS        | Gr.3      | DC04     |
| EDDQ           | SPCF      | JSC270F   | EDDS       | Gr.4      | DC05     |
| SEDDQ          | SPCG      | JSC270G   | _          | Gr.5      | DC06     |

# Structural Steel-Commercial Type/Deep-drawing Type/Bake-hardening Type

| Classification         | JIS G3135 | JFS A2001 | ASTM<br>A1008(SS) | SAE J1392 | SAE J2340 | EN 10268 |
|------------------------|-----------|-----------|-------------------|-----------|-----------|----------|
|                        | _         | _         | Gr.25             | _         | _         | _        |
|                        | _         | JSC340W   | Gr.30             | _         | _         | _        |
| Commercial<br>Type     | SPFC370   | JSC370W   | Gr.33             | 035CL     | _         | HC220P   |
|                        | SPFC390   | JSC390W   | Gr.40             | 040CL     | 300S      | _        |
|                        | SPFC440   | JSC440W   | _                 | 045CL     | 3005      | HC260P   |
|                        | _         | JSC340P   | _                 | _         | 180A      | _        |
| Deep-drawing           | _         | JSC370P   | _                 | _         | 210A      | HC220Y   |
| Туре                   | _         | JSC390P   | _                 | _         | 250A      | _        |
|                        | _         | JSC440P   | _                 | _         | 280A      | HC260Y   |
|                        | _         | JSC270H   | _                 | _         | _         | _        |
|                        | _         | 10024011  | _                 | _         | 180B      | HC180B   |
| Bake-hardening<br>Type | _         | JSC340H   | _                 | _         | 210B      | HC220B   |
|                        | _         | _         | _                 | _         | 250B      | HC260B   |
|                        | _         | _         | _                 | _         | 280B      | HC300B   |

Structural Steel -High Yeild Ratio Type/ Low Yeild Ratio Type

| Classification           | JIS G3135 | JFS A2001 | ASTM A1008<br>(HSLAS) | SAE J1392 | SAE J2340 | EN 10268 |
|--------------------------|-----------|-----------|-----------------------|-----------|-----------|----------|
| High Yeild Ratio<br>Type |           | _         | Gr.45                 | 045XL     | 300X      | HC300LA  |
|                          | _         | JSC440R   | Gr.50                 | 050XL     | 340X      | HC340LA  |
|                          | _         | _         | Gr.55                 | _         | 380X      | HC380LA  |
|                          | _         | _         | Gr.60                 | 060XL     | 420X      | HC420LA  |
|                          | _         | JSC590R   | Gr.65                 | _         | _         | _        |
|                          | _         | _         | Gr.70                 | 070XL     | 490X/R    | _        |
|                          | _         | _         | Gr.80                 | 080XL     | 550X/R    | _        |
|                          | _         |           | _                     | _         | 700R      | _        |
|                          | _         | _         | _                     | _         | 830R      | _        |
|                          | _         | _         | _                     | _         | 600DH     | _        |
|                          | _         | _         | _                     | _         | 700DH     | _        |
| Low Yeild Ratio<br>Type  | _         | _         | _                     | _         | 500DL     | _        |
|                          | _         | _         | _                     | _         | 600DL1    | _        |
|                          | SPFC590Y  | JSC590Y   | _                     | _         | 600DL2    | _        |
|                          | SPFC780Y  | JSC780Y   | _                     | _         | 800DL     | _        |
|                          | SPFC980Y  | JSC980Y   | _                     | _         | 950DL     | _        |
|                          | _         | _         | _                     | _         | 1000DL    | _        |
|                          | _         | JSC1180Y  | _                     | _         | _         | _        |

Note : The grades of these specificaitons are simlilar, not the same in the table above

# 13

|                                     | Required Ord        | ering Data                  | Example                      |  |  |
|-------------------------------------|---------------------|-----------------------------|------------------------------|--|--|
| Specification (Name, Number, Grade) |                     |                             |                              |  |  |
|                                     | Temper              | A,S,8,4,2,1                 |                              |  |  |
| 1                                   | 0 ( 5               | Bright Finish (B)           |                              |  |  |
|                                     | Surface Finish      | Matte (Dull)<br>Finish (D)  | JIS G3141 SPCC-SD CQ2 GP R35 |  |  |
|                                     | Surface Quality     | General Purposes<br>(GP)    |                              |  |  |
|                                     | Surface Quality     | Unexposed (UE)              |                              |  |  |
| 2                                   | Oiled               | or Non-oiled                | Oiled                        |  |  |
| 3                                   | Dimensions (Thickne | ss×Width×Length(or coil))   | 1.0mm×1219mm×Coil            |  |  |
| 4                                   | Coil Size (Inside D | iameter , Outside Diameter) | ID 762mm OD 1700mm max.      |  |  |
| 5                                   | Mana                | Max. Mass                   | 10t max.                     |  |  |
|                                     | Mass                | Order Mass                  | 450t                         |  |  |
| 6                                   | Applications an     | d Fabricating Methods       | Welded Pipe                  |  |  |
| 7                                   | Special Requir      | ements (if Required)        | Hardness: 55 HRB max.        |  |  |

Remarks: 1. The contents of this catalog are for reference only-customers are urged to consult the specifications published by the corresponding associations.

- 2. Information of the available steel grades, sizes, marking and packing as shown herein may be updated without notice to comply with actual production situations.
- We invite you to contact our Head Office should you have any questions concerning steel specifications or ordering requirements.

Phone number are listed below for your convenience. Numbers of our international Offices are shown on the back cover.

## 1.Sales services

# CHINA STEEL GLOBAL TRADING CORPORATION

Address: 10F, NO.88, Cheng gong 2nd Rd, Qian zhen, Kaohsiung 80661 TAIWAN

Tel: 886-7-3322168 | Fax: 886-7-3356411 | E-mail: c00681@mail.csc.com.tw

#### CSGT JAPAN CO., LTD.

#### CSGT HONG KONG LIMITED

| Address: ROOM 1407,14/F, WORLD WIDE HOUSE, 19 DES VOEUX ROAD, CENTRAL, HONG KONG | Tel: 852-25231488 | Fax: 852-25234748 | E-mail: mhliu@csgthk.com.hk

### CSGT (SHANGHAI) CO.,LTD.

Address: 21F, NO.1468 NAN JING WEST RD., SHANGHAI 200040

#### CSGT (SINGAPORE) PTE, LTD.

Address: #14-01, MAS BUILDING, 10 SHENTON WAY SINGAPORE 079117

Tel: 65-62238777~8 | Fax: 65-62256054 | E-mail: changcc@csgtsg.com.sg

# 2.Metallurgical Department

Technical Service Section-Metallurgy: 886-7-8021335



#### **Head Office**

- Address: #1, Chung Kang Rd., Hsiao Kang, Kaohsiung 81233, Taiwan, Republic of China
- Tel: 886-7-802-111
- Fax: 886-7-802-2511, 801-9427
- Web: http://www.csc.com.tw

# China Steel Building (Group Headquarters)

- Address: #88, Chenggong 2nd Rd., Qianzhen, Kaohsiung 80661, Taiwan, Republic of China
- Tel:886-7-337-1111
- Fax: 886-7-537-3570

# **Taipei Liaison Office**

- Address : Room A. 28F, #7, Sec.5, Xinvi Rd., Xinvi, Taipei 11049, Taiwan, Republic of China
- Tel: 886-2-8758-0000
- Fax: 886-2-8758-0007

#### Osaka Office

- Address: 1F, Osaka U2 Bldg., 4-7Uchihonmachi 2-Chome, Chuoku , Osaka 540-0026, Japan.
- Tel: 81-6-6910-0888
- Fax: 81-6-6910-0887

# Singapore Office

- Address: #14-01 Mas Building, 10 Shenton Way, Singapore 079117
- Tel:65-6223-8777-8
- Fax: 65-62256054

(Manual download)









CAT.NO.3-CR-01-2014-E1